193
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Uncovering the inhibitory potentials of Phyllanthus nivosus leaf and its bioactive compounds against Plasmodium lactate dehydrogenase for malaria therapy

, , , , , , , , , , , , , & show all
Pages 9787-9796 | Received 27 Jun 2022, Accepted 06 Nov 2022, Published online: 21 Nov 2022

References

  • Adebayo, J. O., & Krettli, A. U. (2011). Potential antimalarials from Nigerian plants: A review. Journal of Ethnopharmacology, 133(2), 289–302. https://doi.org/10.1016/j.jep.2010.11.024
  • Adegboyega, A. E., Johnson, T. O., & Omale, S. (2021). Computational modeling of the pharmacological actions of some antiviral agents against SARS-CoV-2. In Data science for COVID-19. Elsevier Inc. https://doi.org/10.1016/b978-0-12-824536-1.00018-6
  • Arifin, W. N., & Zahiruddin, W. M. (2017). Sample size calculation in animal studies using resource equation approach. Malaysian Journal of Medical Sciences, 24(5), 101–105. https://doi.org/10.21315/mjms2017.24.5.11
  • Baird, J. K., Caneta-Miguel, E., Masbar, S., Bustos, D. G., Abrenica, J. A., Layawen, A. V. O., Calulut, J. M., Leksana, B., & Wignall, F. S. (1996). Survey of resistance to chloroquine of falciparum and vivax malaria in Palawan, The Philippines. Transactions of the Royal Society of Tropical Medicine and Hygiene, 90(4), 413–414. https://doi.org/10.1016/S0035-9203(96)90528-3
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Bruce-Chwatt, L. J. (1982). Qinghaosu: a new antimalarial. British Medical Journal (Clinical Research ed.), 284(6318), 767–768. 284 https://doi.org/10.1136/bmj.284.6318.768
  • Dacie, J. V., & Lewis, S. M. (2000). Practical haematology (9th ed.). Churchill Livingstone.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(January), 42717–42713. https://doi.org/10.1038/srep42717
  • Déclaire Mabou, F., Belinda, I., & Yossa, N. (2021). TERPENES : structural classification and biological activities. IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS), 16(3), 2319–7676. https://doi.org/10.9790/3008-1603012540
  • Iwaloye, O., Elekofehinti, O. O., Momoh, A. I., Babatomiwa, K., & Ariyo, E. O. (2020). In silico molecular studies of natural compounds as possible anti-Alzheimer’s agents: ligand-based design. Network Modeling Analysis in Health Informatics and Bioinformatics, 9(1), 54. https://doi.org/10.1007/s13721-020-00262-7
  • Johnson, T. O., Odoh, K. D., Nwonuma, C. O., Akinsanmi, A. O., & Adegboyega, A. E. (2020). Biochemical evaluation and molecular docking assessment of the anti-inflammatory potential of Phyllanthus nivosus leaf against ulcerative colitis. Heliyon, 6(5), e03893. https://doi.org/10.1016/j.heliyon.2020.e03893
  • Johnson, T. O., Adegboyega, A. E., Iwaloye, O., Eseola, O. A., Plass, W., Afolabi, B., Rotimi, D., Ahmed, E. I., Albrakati, A., Batiha, G. E., & Adeyemi, O. S. (2021). Computational study of the therapeutic potentials of a new series of imidazole derivatives against SARS-CoV-2. Journal of Pharmacological Sciences, 147(1), 62–71. https://doi.org/10.1016/j.jphs.2021.05.004
  • Johnson, T. O., Istifanus, G., & Kutshik, R. J. (2020). In vitro and in vivo analysis of the anti-plasmodial activity of ethanol extract of Phyllanthus nivosus W. Bull leaf. Journal of Parasitic Diseases: Official Organ of the Indian Society for Parasitology, 44(1), 166–173. https://doi.org/10.1007/s12639-019-01178-4
  • Johnson, T., & Omolara. (2015). Transmission blocking strategy for malaria eradication: the role. International Journal of Pharmacognosy, 2, 484–493. https://doi.org/10.13040/IJPSR.0975-8232.IJP.2(10).484-93
  • Kindala, J., Afolabi, E., Wannang, N., Ajima, U., Agwom, F., Johnson, T., Mpiana, P., & Taba, K. (2016). Synthesis and antimalarial properties of three substituted trinitro-tribenzylamine. Organic & Medicinal Chemistry International Journal, 1(3), 1–4. https://doi.org/10.19080/OMCIJ.2016.01.555561
  • Klayman, D. L. (1985). Qinghaosu (artemisinin): An antimalarial drug from China. Science (New York, NY), 228(4703), 1049–1055. https://doi.org/10.1126/science.3887571
  • Liu, Z. (2008). Preparation of botanical samples for biomedical research. Endocrine, Metabolic & Immune Disorders Drug Targets, 8(2), 112–121. https://doi.org/10.2174/187153008784534358
  • Ojo, O. A., Adegboyega, A. E., Johnson, G. I., Umedum, N. L., Onuh, K., Adeduro, M. N., Nwobodo, V. O., Elekan, A. O., Alemika, T. E., & Johnson, T. O. (2021). Deciphering the interactions of compounds from Allium sativum targeted towards identification of novel PTP 1B inhibitors in diabetes treatment: A computational approach. Informatics in Medicine Unlocked, 26, 100719. https://doi.org/10.1016/j.imu.2021.100719
  • Okokon, J. E., Koofreh, D., & Azare, B. A. (2015). Antimalarial activities of Breynia Nivosa. Journal of Herbal Drugs, 5(4), 168–172.
  • Olsson, M. H. M., SØndergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011). PROPKA3: Consistent treatment of internal and surface residues in empirical p K a predictions. Journal of Chemical Theory and Computation, 7(2), 525–537. https://doi.org/10.1021/ct100578z
  • Oluba, O. M. (2019). Ganoderma terpenoid extract exhibited anti-plasmodial activity by a mechanism involving reduction in erythrocyte and hepatic lipids in Plasmodium berghei infected mice. Lipids in Health and Disease, 18(1), 12–19. https://doi.org/10.1186/s12944-018-0951-x
  • Onyegbule, F., Ilouno, I., Ikeh, C., Umeokoli, B., & Eze, P. (2014). Evaluation of phytochemical constituents, analgesic, anti-inflammatory, antimicrobial and antioxidant activities of extracts of Breynia nivosa leaves. Planta Medica, 80(16), 80. https://doi.org/10.1055/s-0034-1395078
  • Pillay, P., Vleggaar, R., Maharaj, V. J., Smith, P. J., & Lategan, C. A. (2007). Isolation and identification of antiplasmodial sesquiterpene lactones from Oncosiphon piluliferum. Journal of Ethnopharmacology, 112(1), 71–76. https://doi.org/10.1016/j.jep.2007.02.002
  • Pinzi, L., & Rastelli, G. (2019). Molecular docking: Shifting paradigms in drug discovery. International Journal of Molecular Sciences, 20(18), 4331. https://doi.org/10.3390/ijms20184331
  • Read, J. A., Wilkinson, K. W., Tranter, R., Sessions, R. B., & Brady, R. L. (1999). Chloroquine binds in the cofactor binding site of Plasmodium falciparum lactate dehydrogenase. The Journal of Biological Chemistry, 274(15), 10213–10218. https://doi.org/10.1074/jbc.274.15.10213
  • Samuel, B. B., Oluyemi, W. M., Johnson, T. O., & Adegboyega, A. E. (2021). High-throughput virtual screening with molecular docking, pharmacophore modelling and adme prediction to discover potential inhibitors of plasmodium falciparum lactate dehydrogenase (PfLDH) from compounds of combretaceae family. Tropical Journal of Natural Product Research, 5(9), 1665–1672. https://doi.org/10.26538/tjnpr/v5i9.22
  • Saxena, S., Pant, N., Jain, D. C., & Bhakuni, R. S. (2003). Antimalarial agents from plant sources. Current Science, 85(9), 1314–1329.
  • Shadrack, D. M., Nyandoro, S. S., Munissi, J. J. E., & Mubofu, E. B. (2016). In silico evaluation of anti-malarial agents from hoslundia opposita as inhibitors of plasmodium falciparum lactate dehydrogenase (PfLDH) Enzyme. Computational Molecular Bioscience, 6(2), 23–32. https://doi.org/10.4236/cmb.2016.62002
  • Sofowora, A. (1993). Medicinal plants and traditional medicine in Africa (2nd ed.). Spectrum Books Ltd. https://books.google.com.ng/books/about/Medicinal_Plants_and_Traditional_Medicin.html?id=ZdaxQwAACAAJ&redir_esc=y
  • Trease, G. E., & Evans, W. C. (1989). Trease and Evans’ pharmacognosy (11th ed.). Bailliere Tindall. https://doi.org/10.1016/s0378-8741(02)00161-7
  • Ugwuja, D. I., Okoro, U. C., Soman, S. S., Soni, R., Okafor, S. N., & Ugwu, D. I. (2019). New peptide derived antimalaria and antimicrobial agents bearing sulphonamide moiety. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 1388–1399. https://doi.org/10.1080/14756366.2019.1651313
  • Waingeh, V. F., Groves, A. T., & Eberle, J. A. (2013). Binding of quinoline-based inhibitors to < i>Plasmodium falciparum</i > lactate dehydrogenase: A molecular docking study. Open Journal of Biophysics, 3(4), 285–290. https://doi.org/10.4236/ojbiphy.2013.34034
  • WHO. (2021). World Malaria Report 2021. World Health Organization.
  • Wiwanitkit, V. (2007). Plasmodium and host lactate dehydrogenase molecular function and biological pathways: Implication for antimalarial drug discovery. Chemical Biology & Drug Design, 69(4), 280–283. https://doi.org/10.1111/j.1747-0285.2007.00495.x
  • Zakaria, N. H., Hassan, N. I., & Wai, L. K. (2020). Molecular docking study of the interactions between plasmodium falciparum lactate dehydrogenase and 4-aminoquinoline hybrids. Sains Malaysiana, 49(8), 1905–1913. https://doi.org/10.17576/jsm-2020-4908-12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.