175
Views
1
CrossRef citations to date
0
Altmetric
Research Article

In silico evaluation of the inhibitory potential of nucleocapsid inhibitors of SARS-CoV-2: a binding and energetic perspective

, , , , , , & ORCID Icon show all
Pages 9797-9807 | Received 17 Aug 2022, Accepted 07 Nov 2022, Published online: 15 Nov 2022

References

  • Ahamad, S., Gupta, D., & Kumar, V. (2020). Targeting SARS-CoV-2 nucleocapsid oligomerization: Insights from molecular docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 40(6), 1–14. https://doi.org/10.1080/07391102.2020.1839563
  • Ahamad, S., Gupta, D., & Kumar, V. (2022). Targeting SARS-CoV-2 nucleocapsid oligomerization: Insights from molecular docking and molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 40(6), 2430–2443. https://doi.org/10.1080/07391102.2020.1839563
  • Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S. A., Rouphael, N., Creech, C. B., McGettigan, J., Khetan, S., Segall, N., Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil, K., Corey, L., … Zaks, T., COVE Study Group. (2021). Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. The New England Journal of Medicine, 384(5), 403–416. https://doi.org/10.1056/NEJMoa2035389
  • Baric, R. S., Nelson, G. W., Fleming, J. O., Deans, R. J., Keck, J. G., Casteel, N., & Stohlman, S. A. (1988). Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription. Journal of Virology, 62(11), 4280–4287. https://doi.org/10.1128/JVI.62.11.4280-4287.1988
  • Chang, C. K., Lo, S. C., Wang, Y. S., & Hou, M. H. (2016). Recent insights into the development of therapeutics against coronavirus diseases by targeting N protein. Drug Discovery Today, 21(4), 562–572. S1359-6446(15)00450-X [pii] https://doi.org/10.1016/j.drudis.2015.11.015
  • Chaudhary, T., & Chaudhary, A. (2021). TRIPS waiver of COVID-19 vaccines: Impact on pharmaceutical industry and what it means to developing countries. The Journal of World Intellectual Property, 24(5-6), 447–454. JWIP12198 [pii] https://doi.org/10.1111/jwip.12198
  • Chen, H., & Zhou, H. X. (2005). Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against NMR data. Proteins, 61(1), 21–35. https://doi.org/10.1002/prot.20514
  • Chenavas, S., Crepin, T., Delmas, B., Ruigrok, R. W., & Slama-Schwok, A. (2013). Influenza virus nucleoprotein: structure, RNA binding, oligomerization and antiviral drug target. Future Microbiology, 8(12), 1537–1545. https://doi.org/10.2217/fmb.13.128
  • Cong, Y., Ulasli, M., Schepers, H., Mauthe, M., V’kovski, P., Kriegenburg, F., Thiel, V., de Haan, C. A. M., & Reggiori, F. (2020). Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle. Journal of Virology, 94(4), e01925-19. https://doi.org/10.1128/JVI.01925-19
  • Fan, W., Qian, S., Qian, P., & Li, X. (2016). Antiviral activity of luteolin against Japanese encephalitis virus. Virus Research, 220, 112–116. S0168-1702(16)30041-7 [pii] https://doi.org/10.1016/j.virusres.2016.04.021
  • Ferreiro, D. U., Hegler, J. A., Komives, E. A., & Wolynes, P. G. (2007). Localizing frustration in native proteins and protein assemblies. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19819–19824. doi: 0709915104 [pii] https://doi.org/10.1073/pnas.0709915104
  • Flaherty, K. R., Wells, A. U., Cottin, V., Devaraj, A., Walsh, S. L. F., Inoue, Y., Richeldi, L., Kolb, M., Tetzlaff, K., Stowasser, S., Coeck, C., Clerisme-Beaty, E., Rosenstock, B., Quaresma, M., Haeufel, T., Goeldner, R.-G., Schlenker-Herceg, R., & Brown, K. K., INBUILD Trial Investigators. (2019). Nintedanib in progressive fibrosing interstitial lung diseases. The New England Journal of Medicine, 381(18), 1718–1727. https://doi.org/10.1056/NEJMoa1908681
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Gerritz, S. W., Cianci, C., Kim, S., Pearce, B. C., Deminie, C., Discotto, L., McAuliffe, B., Minassian, B. F., Shi, S., Zhu, S., Zhai, W., Pendri, A., Li, G., Poss, M. A., Edavettal, S., McDonnell, P. A., Lewis, H. A., Maskos, K., Mörtl, M., … Krystal, M. (2011). Inhibition of influenza virus replication via small molecules that induce the formation of higher-order nucleoprotein oligomers. Proceedings of the National Academy of Sciences of the United States of America, 108(37), 15366–15371. 1107906108 [pii] https://doi.org/10.1073/pnas.1107906108
  • Goodarzi, P., Mahdavi, F., Mirzaei, R., Hasanvand, H., Sholeh, M., Zamani, F., Sohrabi, M., Tabibzadeh, A., Jeda, A. S., Niya, M. H. K., Keyvani, H., & Karampoor, S. (2020). Coronavirus disease 2019 (COVID-19): Immunological approaches and emerging pharmacologic treatments. International Immunopharmacology, 88, 106885. doi: S1567-5769(20)32309-2 [pii] https://doi.org/10.1016/j.intimp.2020.106885
  • Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., O’Meara, M. J., Rezelj, V. V., Guo, J. Z., Swaney, D. L., Tummino, T. A., Hüttenhain, R., Kaake, R. M., Richards, A. L., Tutuncuoglu, B., Foussard, H., Batra, J., Haas, K., Modak, M., … Krogan, N. J. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583(7816), 459–468.[pii] https://doi.org/10.1038/s41586-020-2286-9
  • Grifoni, A., Sidney, J., Zhang, Y., Scheuermann, R. H., Peters, B., & Sette, A. (2020). A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell Host & Microbe, 27(4), 671–680 e672. doi: S1931-3128(20)30166-9 [pii] https://doi.org/10.1016/j.chom.2020.03.002
  • He, R., Dobie, F., Ballantine, M., Leeson, A., Li, Y., Bastien, N., Cutts, T., Andonov, A., Cao, J., Booth, T. F., Plummer, F. A., Tyler, S., Baker, L., & Li, X. (2004). Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochemical and Biophysical Research Communications, 316(2), 476–483. S0006291X04003250 [pii] https://doi.org/10.1016/j.bbrc.2004.02.074
  • Holmes, K. V., & Enjuanes, L. (2003). Virology. The SARS coronavirus: a postgenomic era. Science (New York, NY), 300(5624), 1377–1378. 300/5624/1377 [pii] https://doi.org/10.1126/science.1086418
  • Hsieh, P.-K., Chang, S. C., Huang, C.-C., Lee, T.-T., Hsiao, C.-W., Kou, Y.-H., Chen, I.-Y., Chang, C.-K., Huang, T.-H., & Chang, M.-F. (2005). Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. Journal of Virology, 79(22), 13848–13855. doi: 79/22/13848 [pii] https://doi.org/10.1128/JVI.79.22.13848-13855.2005
  • Huang, J., & MacKerell, A. D. Jr (2013). CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Hung, H.-C., Liu, C.-L., Hsu, J. T.-A., Horng, J.-T., Fang, M.-Y., Wu, S.-Y., Ueng, S.-H., Wang, M.-Y., Yaw, C.-W., & Hou, M.-H. (2012). Development of an anti-influenza drug screening assay targeting nucleoproteins with tryptophan fluorescence quenching. Analytical Chemistry, 84(15), 6391–6399. https://doi.org/10.1021/ac2022426
  • Husain, S., Kumar, V., & Hassan, M. I. (2018). Phosphorylation-induced changes in the energetic frustration in human Tank binding kinase 1. Journal of Theoretical Biology, 449, 14–22. doi: S0022-5193(18)30177-2 [pii] https://doi.org/10.1016/j.jtbi.2018.04.016
  • Ivanov, P., Kedersha, N., & Anderson, P. (2019). Stress granules and processing bodies in translational control. Cold Spring Harbor Perspectives in Biology, 11(5), a032813. doi: a032813 [pii] cshperspect.a032813 [pii] https://doi.org/10.1101/cshperspect.a032813
  • Jo, S., Kim, S., Shin, D. H., & Kim, M. S. (2020). Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 145–151. https://doi.org/10.1080/14756366.2019.1690480
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22(12), 2577–2637. https://doi.org/10.1002/bip.360221211
  • Kang, S., Yang, M., Hong, Z., Zhang, L., Huang, Z., Chen, X., … Chen, S. (2020). Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharmaceutica Sinica B,  10(7), 1228-1238. https://doi.org/10.1016/j.apsb.2020.04.009
  • Khan, A., Tahir Khan, M., Saleem, S., Junaid, M., Ali, A., Shujait Ali, S., Khan, M., & Wei, D.-Q. (2020). Structural insights into the mechanism of RNA recognition by the N-terminal RNA-binding domain of the SARS-CoV-2 nucleocapsid phosphoprotein. Computational and Structural Biotechnology Journal, 18, 2174–2184. S2001-0370(20)30359-7 [pii] https://doi.org/10.1016/j.csbj.2020.08.006
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Lejal, N., Tarus, B., Bouguyon, E., Chenavas, S., Bertho, N., Delmas, B., Ruigrok, R. W. H., Di Primo, C., & Slama-Schwok, A. (2013). Structure-based discovery of the novel antiviral properties of naproxen against the nucleoprotein of influenza A virus. Antimicrobial Agents and Chemotherapy, 57(5), 2231–2242. AAC.02335-12 [pii] https://doi.org/10.1128/AAC.02335-12
  • Lin, S. Y., Liu, C. L., Chang, Y. M., Zhao, J., Perlman, S., & Hou, M. H. (2014). Structural basis for the identification of the N-terminal domain of coronavirus nucleocapsid protein as an antiviral target. Journal of Medicinal Chemistry, 57(6), 2247–2257. https://doi.org/10.1021/jm500089r
  • Lo, Y. S., Lin, S. Y., Wang, S. M., Wang, C. T., Chiu, Y. L., Huang, T. H., & Hou, M. H. (2013). Oligomerization of the carboxyl terminal domain of the human coronavirus 229E nucleocapsid protein. FEBS Letters, 587(2), 120–127. S0014-5793(12)00875-7 [pii] https://doi.org/10.1016/j.febslet.2012.11.016
  • Lundborg, M., & Lindahl, E. (2015). Automatic GROMACS topology generation and comparisons of force fields for solvation free energy calculations. The Journal of Physical Chemistry. B, 119(3), 810–823. https://doi.org/10.1021/jp505332p
  • Lurie, N., Saville, M., Hatchett, R., & Halton, J. (2020). Developing Covid-19 vaccines at pandemic speed. The New England Journal of Medicine, 382(21), 1969–1973. https://doi.org/10.1056/NEJMp2005630
  • McBride, R., van Zyl, M., & Fielding, B. C. (2014). The coronavirus nucleocapsid is a multifunctional protein. Viruses, 6(8), 2991–3018. v6082991 [pii] https://doi.org/10.3390/v6082991
  • McGibbon, R. T., Beauchamp, K. A., Harrigan, M. P., Klein, C., Swails, J. M., Hernández, C. X., Schwantes, C. R., Wang, L.-P., Lane, T. J., & Pande, V. S. (2015). MDTraj: A modern open library for the analysis of molecular dynamics trajectories. Biophysical Journal, 109(8), 1528–1532. S0006-3495(15)00826-7 [pii] https://doi.org/10.1016/j.bpj.2015.08.015
  • Mishra, C. B., Pandey, P., Sharma, R. D., Malik, M. Z., Mongre, R. K., Lynn, A. M., Prasad, R., Jeon, R., & Prakash, A. (2021). Identifying the natural polyphenol catechin as a multi-targeted agent against SARS-CoV-2 for the plausible therapy of COVID-19: an integrated computational approach. Briefings in Bioinformatics, 22(2), 1346–1360. 6056288 [pii] https://doi.org/10.1093/bib/bbaa378
  • Monod, A., Swale, C., Tarus, B., Tissot, A., Delmas, B., Ruigrok, R. W., Crépin, T., & Slama-Schwok, A. (2015). Learning from structure-based drug design and new antivirals targeting the ribonucleoprotein complex for the treatment of influenza. Expert Opinion on Drug Discovery, 10(4), 345–371. https://doi.org/10.1517/17460441.2015.1019859
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nakagawa, K., Narayanan, K., Wada, M., & Makino, S. (2018). Inhibition of stress granule formation by Middle East respiratory syndrome coronavirus 4a accessory protein facilitates viral translation, leading to efficient virus replication. Journal of Virology, 92(20), e00902-18. https://doi.org/10.1128/JVI.00902-18
  • Negi, S. S., Schein, C. H., Oezguen, N., Power, T. D., & Braun, W. (2007). InterProSurf: a web server for predicting interacting sites on protein surfaces. Bioinformatics (Oxford, England), 23(24), 3397–3399. doi: btm474 [pii] https://doi.org/10.1093/bioinformatics/btm474
  • Nelson, G. W., Stohlman, S. A., & Tahara, S. M. (2000). High affinity interaction between nucleocapsid protein and leader/intergenic sequence of mouse hepatitis virus RNA. The Journal of General Virology, 81(Pt 1), 181–188. https://doi.org/10.1099/0022-1317-81-1-181
  • Niederman, M. S., & Zumla, A. (2021). Editorial: Coronavirus disease 2019 (COVID-19) - advances in epidemiology, diagnostics, treatments, host-directed therapies, pathogenesis, vaccines, and ongoing challenges. Current Opinion in Pulmonary Medicine, 27(3), 141–145. 00063198-202105000-00002 [pii] https://doi.org/10.1097/MCP.0000000000000771
  • Pandey, P., Prasad, K., Prakash, A., & Kumar, V. (2020). Insights into the biased activity of dextromethorphan and haloperidol towards SARS-CoV-2 NSP6: in silico binding mechanistic analysis. Journal of Molecular Medicine (Berlin, Germany), 98(12), 1659–1673.[pii] https://doi.org/10.1007/s00109-020-01980-1
  • Parra, R. G., Schafer, N. P., Radusky, L. G., Tsai, M. Y., Guzovsky, A. B., Wolynes, P. G., & Ferreiro, D. U. (2016). Protein Frustratometer 2: a tool to localize energetic frustration in protein molecules, now with electrostatics. Nucleic Acids Research, 44(W1), W356–360. gkw304 [pii] https://doi.org/10.1093/nar/gkw304
  • Peng, Y., Du, N., Lei, Y., Dorje, S., Qi, J., Luo, T., Gao, G. F., & Song, H. (2020). Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design. The EMBO Journal, 39(20), e105938. https://doi.org/10.15252/embj.2020105938
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W., Hammitt, L. L., … Gruber, W. C., C4591001 Clinical Trial Group. (2020). Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. The New England Journal of Medicine, 383(27), 2603–2615. https://doi.org/10.1056/NEJMoa2034577
  • Prakash, A., Kumar, V., Banerjee, A., Lynn, A. M., & Prasad, R. (2020). Structural heterogeneity in RNA recognition motif 2 (RRM2) of TAR DNA-binding protein 43 (TDP-43): clue to amyotrophic lateral sclerosis. Journal of Biomolecular Structure and Dynamics, 357–367. https://doi.org/10.1080/07391102.2020.1714481
  • Prakash, A., Kumar, V., Meena, N. K., Hassan, M. I., & Lynn, A. M. (2019). Comparative analysis of thermal unfolding simulations of RNA recognition motifs (RRMs) of TAR DNA-binding protein 43 (TDP-43). Journal of Biomolecular Structure & Dynamics, 37(1), 178–194. https://doi.org/10.1080/07391102.2017.1422026
  • Prakash, A., Kumar, V., Pandey, P., Bharti, D. R., Vishwakarma, P., Singh, R., Hassan, M. I., & Lynn, A. M. (2018). Solvent sensitivity of protein aggregation in Cu, Zn superoxide dismutase: a molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics, 36(10), 2605–2617. https://doi.org/10.1080/07391102.2017.1364670
  • Raaben, M., Groot Koerkamp, M. J., Rottier, P. J., & de Haan, C. A. (2007). Mouse hepatitis coronavirus replication induces host translational shutoff and mRNA decay, with concomitant formation of stress granules and processing bodies. Cellular Microbiology, 9(9), 2218–2229. doi: CMI951 [pii] https://doi.org/10.1111/j.1462-5822.2007.00951.x
  • Reineke, L. C., Tsai, W. C., Jain, A., Kaelber, J. T., Jung, S. Y., & Lloyd, R. E. (2017). Casein kinase 2 is linked to stress granule dynamics through phosphorylation of the stress granule nucleating protein G3BP1. Molecular and Cellular Biology, 37(4), e00596-16.https://doi.org/10.1128/MCB.00596-16
  • Sadoff, J., Le Gars, M., Shukarev, G., Heerwegh, D., Truyers, C., de Groot, A. M., Stoop, J., Tete, S., Van Damme, W., Leroux-Roels, I., Berghmans, P.-J., Kimmel, M., Van Damme, P., de Hoon, J., Smith, W., Stephenson, K. E., De Rosa, S. C., Cohen, K. W., McElrath, M. J., … Schuitemaker, H. (2021). Interim results of a phase 1-2a trial of Ad26.COV2.S Covid-19 vaccine. The New England Journal of Medicine, 384(19), 1824–1835. https://doi.org/10.1056/NEJMoa2034201
  • Sanders, J. M., Monogue, M. L., Jodlowski, T. Z., & Cutrell, J. B. (2020). Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA, 323(18), 1824–1836. 2764727 [pii] https://doi.org/10.1001/jama.2020.6019
  • Sarma, P., Sekhar, N., Prajapat, M., Avti, P., Kaur, H., Kumar, S., Singh, S., Kumar, H., Prakash, A., Dhibar, D. P., Medhi, B. (2020). In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). Journal of Biomolecular Structure and Dynamics, 39(8), 2724-2732. https://doi.org/10.1080/07391102.2020.1753580
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Seeliger, D., & de Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24(5), 417–422. https://doi.org/10.1007/s10822-010-9352-6
  • Slaine, P. D., Kleer, M., Smith, N. K., Khaperskyy, D. A., & McCormick, C. (2017). Stress granule-inducing eukaryotic translation initiation factor 4A inhibitors block influenza A virus replication. Viruses, 9(12), 388. doi: E388 [pii] v9120388 [pii] https://doi.org/10.3390/v9120388
  • Su, S., Wang, Q., & Jiang, S. (2021). Facing the challenge of viral mutations in the age of pandemic: Developing highly potent, broad-spectrum, and safe COVID-19 vaccines and therapeutics. Clinical and Translational Medicine, 11(1), e284. https://doi.org/10.1002/ctm2.284
  • Surjit, M., Kumar, R., Mishra, R. N., Reddy, M. K., Chow, V. T., & Lal, S. K. (2005). The severe acute respiratory syndrome coronavirus nucleocapsid protein is phosphorylated and localizes in the cytoplasm by 14-3-3-mediated translocation. Journal of Virology, 79(17), 11476–11486. doi: 79/17/11476 [pii] https://doi.org/10.1128/JVI.79.17.11476-11486.2005
  • Surjit, M., Liu, B., Chow, V. T., & Lal, S. K. (2006). The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. The Journal of Biological Chemistry, 281(16), 10669–10681. doi: M509233200 [pii] https://doi.org/10.1074/jbc.M509233200
  • Tarus, B., Bertrand, H., Zedda, G., Di Primo, C., Quideau, S., & Slama-Schwok, A. (2015). Structure-based design of novel naproxen derivatives targeting monomeric nucleoprotein of Influenza A virus. Journal of Biomolecular Structure & Dynamics, 33(9), 1899–1912. https://doi.org/10.1080/07391102.2014.979230
  • Ton, A. T., Gentile, F., Hsing, M., Ban, F., & Cherkasov, A. (2020). Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds. Molecular Informatics, 39(8), 2000028. https://doi.org/10.1002/minf.202000028
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Wada, M., Lokugamage, K. G., Nakagawa, K., Narayanan, K., & Makino, S. (2018). Interplay between coronavirus, a cytoplasmic RNA virus, and nonsense-mediated mRNA decay pathway. Proceedings of the National Academy of Sciences of the United States of America, 115(43), E10157–E10166. 1811675115 [pii] https://doi.org/10.1073/pnas.1811675115
  • Wang, C., Nguyen, P. H., Pham, K., Huynh, D., Le, T.-B N., Wang, H., Ren, P., & Luo, R. (2016). Calculating protein-ligand binding affinities with MMPBSA: Method and error analysis. Journal of Computational Chemistry, 37(27), 2436–2446. https://doi.org/10.1002/jcc.24467
  • Yan, H., Ma, L., Wang, H., Wu, S., Huang, H., Gu, Z., Jiang, J., & Li, Y. (2019). Luteolin decreases the yield of influenza A virus in vitro by interfering with the coat protein I complex expression. Journal of Natural Medicines, 73(3), 487–496.[pii] https://doi.org/10.1007/s11418-019-01287-7
  • Yi, L., Li, Z., Yuan, K., Qu, X., Chen, J., Wang, G., Zhang, H., Luo, H., Zhu, L., Jiang, P., Chen, L., Shen, Y., Luo, M., Zuo, G., Hu, J., Duan, D., Nie, Y., Shi, X., Wang, W., … Xu, X. (2004). Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. Journal of Virology, 78(20), 11334–11339. 78/20/11334 [pii] https://doi.org/10.1128/JVI.78.20.11334-11339.2004
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W., China Novel Coronavirus Investigating and Research Team. (2020). A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.