175
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Asn215Ser, Ala143Thr, and Arg112Cys variants in α-galactosidase A protein confer stability loss in Fabry’s disease

, , ORCID Icon, , &
Pages 9840-9849 | Received 18 Aug 2022, Accepted 09 Nov 2022, Published online: 24 Nov 2022

References

  • Al-Khafaji, K., & Taskin Tok, T. (2021). Amygdalin as multi-target anticancer drug against targets of cell division cycle: Double docking and molecular dynamics simulation. Journal of Biomolecular Structure & Dynamics, 39(6), 1965–1974. https://doi.org/10.1080/07391102.2020.1742792
  • Al-Khayyat, M. Z. S., & Al-Dabbagh, A. G. A. (2016). In silico prediction and docking of tertiary structure of LuxI, an inducer synthase of Vibrio fischeri. Reports of Biochemistry & Molecular Biology, 4(2), 66–75.
  • Benkert, P., Tosatto, S. C., & Schomburg, D. (2008). QMEAN: A comprehensive scoring function for model quality assessment. Proteins: Structure, Function, and Bioinformatics, 71(1), 261–277. https://doi.org/10.1002/prot.21715
  • Blaydon, D., Hill, J., & Winchester, B. (2001). Nov Fabry disease: 20 novel GLA mutations in 35 families. Human Mutation, 18(5), 459. https://doi.org/10.1002/humu.1219
  • Bokhari, S., Zulfiqar, H., & Hariz, A. (2022). Fabry disease. StatPearls Publisher.
  • Daison, F. A., Kumar, N., Balakrishnan, S., Venugopal, K., Elango, S., & Sokkar, P. (2022). Molecular dynamics studies on the bacterial membrane pore formation by small molecule antimicrobial agents. Journal of Chemical Information and Modeling, 62(1), 40–48.
  • Dong, Z.-Y., Wang, Q., Lin, S.-P., Chen, P., Liu, J.-N., Liu, S.-W., Cai, G.-Y., Chen, X.-M., & Hong, Q. (2020). GLA missense and promoter variants co-segregating in a Chinese family with Fabry disease. Annals of Translational Medicine, 8(14), 865–865. https://doi.org/10.21037/atm-19-4510
  • Durham, E., Dorr, B., Woetzel, N., Staritzbichler, R., & Meiler, J. (2009). Solvent accessible surface area approximations for rapid and accurate protein structure prediction. Journal of Molecular Modeling, 15(9), 1093–1108.
  • Gajjar, N. D., Dhameliya, T. M., & Shah, G. B. (2021). In search of RdRp and Mpro inhibitors against SARS CoV-2: Molecular docking, molecular dynamic simulations and ADMET analysis. Journal of Molecular Structure, 1239, 130488.
  • Garman, S. C. (2007). Structure–function relationships in α‐galactosidase A. Acta Paediatrica, 96(455), 6–16. https://doi.org/10.1111/j.1651-2227.2007.00198.x
  • Germain, D., Biasotto, M., Tosi, M., Meo, T., Kahn, A., & Poenaru, L. (1997). Fluorescence-assisted mismatch analysis (FAMA) for exhaustive screening of the α-galactosidase A gene and detection of carriers in Fabry disease. Early Human Development, 49(3), 242–243. https://doi.org/10.1016/S0378-3782(97)90568-5
  • Germain, D. P., Brand, E., Burlina, A., Cecchi, F., Garman, S. C., Kempf, J., Laney, D. A., Linhart, A., Maródi, L., Nicholls, K., Ortiz, A., Pieruzzi, F., Shankar, S. P., Waldek, S., Wanner, C., & Jovanovic, A. (2018). Phenotypic characteristics of the p.Asn215Ser (p.N215S) GLA mutation in male and female patients with Fabry disease: A multicenter Fabry Registry study. Molecular Genetics & Genomic Medicine, 6(4), 492–503. https://doi.org/10.1002/mgg3.389
  • Hasan, T., Jahan, E., Ahmed, K. S., Hossain, H., Siam, S., Nahid, N., Mazumder, T., Shuvo, M., & Daula, A. (2022). Rutin hydrate and extract from Castanopsis tribuloides reduces pyrexia via inhibiting microsomal prostaglandin E synthase-1. Biomedicine & Pharmacotherapy, 148, 112774. https://doi.org/10.1016/j.biopha.2022.112774
  • Hemelsoet, D., De Keyser, J., Van Heuverswyn, F., Willems, R., Vandekerckhove, H., Bondue, A., de Asmundis, C., Saenen, J., Van de Walle, S., Godart, P., Kampmann, C., Stepman, H., Poppe, B., & Terryn, W. (2021). Screening for Fabry disease in male patients with arrhythmia requiring a pacemaker or an implantable cardioverter–defibrillator. Circulation, 143(8), 872–874. https://doi.org/10.1161/CIRCULATIONAHA.120.051400
  • Heo, S. H., Kang, E., Kim, Y.-M., Go, H., Kim, K. Y., Jung, J. Y., Kang, M., Kim, G.-H., Kim, J.-M., Choi, I.-H., Choi, J.-H., Jung, S.-C., Desnick, R. J., Yoo, H.-W., & Lee, B. H. (2017). Fabry disease: Characterisation of the plasma proteome pre-and post-enzyme replacement therapy. Journal of Medical Genetics, 54(11), 771–780.
  • Ishii, S., Sakuraba, H., & Suzuki, Y. (1992). Point mutations in the upstream region of the α-galactosidase A gene exon 6 in an atypical variant of Fabry disease. Human Genetics, 89(1), 29–32. https://doi.org/10.1007/BF00207037
  • Jamboti, J., & Forrest, C. H. (2017). Fabry disease; early diagnosis improves prognosis but diagnosis is often delayed. Journal of Nephropathology, 6(3), 130–133. https://doi.org/10.15171/jnp.2017.22
  • Jirásková, A., Bortolussi, G., Dostálová, G., Eremiášová, L., Golaň, L., Danzig, V., Linhart, A., & Vítek, L. (2017). Serum bilirubin levels and promoter variations in HMOX1 and UGT1A1 genes in patients with Fabry disease. Oxidative Medicine and Cellular Longevity, 2017, 9478946. https://doi.org/10.1155/2017/9478946
  • Keighobadi, M., Emami, S., Lagzian, M., Fakhar, M., Rafiei, A., & Valadan, R. (2018). Molecular modeling and structural stability of wild-type and mutant CYP51 from leishmania major: In vitro and in silico analysis of a laboratory strain. Molecules, 23(3), 696. https://doi.org/10.3390/molecules23030696
  • Koide, T., Ishiura, M., Iwai, K., Inoue, M., Kaneda, Y., Okada, Y., & Uchida, T. (1990). A case of Fabry’s disease in a patient with no α‐galactosidase A activity caused by a single amino acid substitution of Pro‐40 by Ser. FEBS Letters, 259(2), 353–356. https://doi.org/10.1016/0014-5793(90)80046-L
  • Kubo, T., Ochi, Y., Baba, Y., Hirota, T., Tanioka, K., Yamasaki, N., Yoshimitsu, M., Higuchi, K., Takenaka, T., Nakajima, K., Togawa, T., Tsukimura, T., Sano, S., Tei, C., Sakuraba, H., & Kitaoka, H. (2017). Prevalence and clinical features of Fabry disease in Japanese male patients with diagnosis of hypertrophic cardiomyopathy. Journal of Cardiology, 69(1), 302–307.
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lenders, M., Weidemann, F., Kurschat, C., Canaan-Kühl, S., Duning, T., Stypmann, J., Schmitz, B., Reiermann, S., Krämer, J., Blaschke, D., Wanner, C., Brand, S.-M., & Brand, E. (2016). Alpha-galactosidase A p. A143T, a non-Fabry disease-causing variant. Orphanet Journal of Rare Diseases, 11(1), 1–9. https://doi.org/10.1186/s13023-016-0441-z
  • Lidove, O., Jaussaud, R., & Aractingi, S. (2006). Dermatological and soft-tissue manifestations of Fabry disease: Characteristics and response to enzyme replacement therapy. In Fabry disease: Perspectives from 5 years of FOS. Oxford PharmaGenesis.
  • Lukas, J., Giese, A.-K., Markoff, A., Grittner, U., Kolodny, E., Mascher, H., Lackner, K. J., Meyer, W., Wree, P., Saviouk, V., & Rolfs, A. (2013). Functional characterisation of alpha-galactosidase a mutations as a basis for a new classification system in Fabry disease. PLoS Genetics, 9(8), e1003632.
  • Lukas, J., Scalia, S., Eichler, S., Pockrandt, A.-M., Dehn, N., Cozma, C., Giese, A.-K., & Rolfs, A. (2016). Functional and clinical consequences of novel α‐galactosidase A mutations in Fabry disease. Human Mutation, 37(1), 43–51.
  • Lobanov, M. I., Bogatyreva, N. S., & Galzitskaia, O. V. (2008). Radius of gyration is indicator of compactness of protein structure. Molekuliarnaia Biologiia, 42(4), 701–706.
  • Muntean, C., Starcea, M., Stoica, C., & Banescu, C. (2022). Clinical characteristics, renal involvement, and therapeutic options in pediatric patients with Fabry disease. Frontiers in Pediatrics, 10, 908657. https://doi.org/10.3389/fped.2022.908657
  • Nance, C. S., Klein, C. J., Banikazemi, M., Dikman, S. H., Phelps, R. G., McArthur, J. C., Rodriguez, M., & Desnick, R. J. (2006). Later-onset Fabry disease: An adult variant presenting with the cramp-fasciculation syndrome. Archives of Neurology, 63(3), 453–457.
  • Ortiz, A., Germain, D. P., Desnick, R. J., Politei, J., Mauer, M., Burlina, A., Eng, C., Hopkin, R. J., Laney, D., Linhart, A., Waldek, S., Wallace, E., Weidemann, F., & Wilcox, W. R. (2018). Fabry disease revisited: Management and treatment recommendations for adult patients. Molecular Genetics and Metabolism, 123(4), 416–427.
  • Pereira, E. M., do Monte, S. J., do Nascimento, F. F., de Castro, J. A., Sousa, J. L., Filho, H. C., da Silva, R. N., Labilloy, A., Monte Neto, J. T., & da Silva, A. S. (2014). Lysosome-associated protein 1 (LAMP-1) and lysosome-associated protein 2 (LAMP-2) in a larger family carrier of Fabry disease. Gene, 536(1), 118–122. https://doi.org/10.1016/j.gene.2013.11.063
  • Pereira, G. R. C., Da Silva, A. N. R., Do Nascimento, S. S., & De Mesquita, J. F. (2019). In silico analysis and molecular dynamics simulation of human superoxide dismutase 3 (SOD3) genetic variants. Journal of Cellular Biochemistry, 120(3), 3583–3598.
  • Robertson, M. J., Qian, Y., Robinson, M. C., Tirado-Rives, J., & Jorgensen, W. L. (2019). Development and testing of the OPLS-AA/M force field for RNA. Journal of Chemical Theory and Computation, 15(4), 2734–2742.
  • Shabbeer, J., Robinson, M., & Desnick, R. J. (2005). Detection of α‐galactosidase a mutations causing fabry disease by denaturing high performance liquid chromatography. Human Mutation, 25(3), 299–305.
  • Sheng, B., Yim, K. F., Lau, L. K., Lee, H. C. H., Fung, K. S. S., Ma, K. F. J., & Chak, W. L. (2020). Two related Chinese Fabry disease patients with a p. N215S pathological variant who presented with nephropathy. Molecular Genetics and Metabolism Reports, 24, 100596.
  • Singharoy, A., Teo, I., McGreevy, R., Stone, J. E., Zhao, J., & Schulten, K. (2016). Molecular dynamics-based refinement and validation for sub-5 Å cryo-electron microscopy maps. eLife, 5, e16105. https://doi.org/10.7554/eLife.16105
  • Sokkar, P., Harms, M., Stürzel, C., Gilg, A., Kizilsavas, G., Raasholm, M., Preising, N., Wagner, M., Kirchhoff, F., Ständker, L., Weidinger, G., Mayer, B., Münch, J., & Sanchez-Garcia, E. (2021). Computational modeling and experimental validation of the EPI-X4/CXCR4 complex allows rational design of small peptide antagonists. Communications Biology, 4(1), 1–13. https://doi.org/10.1038/s42003-021-02638-5
  • Tubiana, T., Carvaillo, J.-C., Boulard, Y., & Bressanelli, S. (2018). TTClust: A versatile molecular simulation trajectory clustering program with graphical summaries. Journal of Chemical Information and Modeling, 58(11), 2178–2182.
  • Tuttolomondo, A., Simonetta, I., Riolo, R., Todaro, F., Di Chiara, T., Miceli, S., & Pinto, A. (2021). Pathogenesis and molecular mechanisms of Anderson–Fabry disease and possible new molecular addressed therapeutic strategies. International Journal of Molecular Sciences, 22(18), 10088. https://doi.org/10.3390/ijms221810088
  • Varela, P., Mastroianni Kirsztajn, G., Motta, F. L., Martin, R. P., Turaça, L. T., Ferrer, H., Gomes, C. P., Nicolicht, P., Mara Marins, M., Pessoa, J. G., Braga, M. C., D’Almeida, V., Martins, A. M., & Pesquero, J. B. (2020). Correlation between GLA variants and alpha-galactosidase A profile in dried blood spot: An observational study in Brazilian patients. Orphanet Journal of Rare Diseases, 15(1), 30.
  • Zhan, D., Zhou, Z., Guan, S., & Han, W. (2013). The effect of conformational variability of phosphotriesterase upon N-acyl-L-homoserine lactone and paraoxon binding: Insights from molecular dynamics studies. Molecules, 18(12), 15501–15518. https://doi.org/10.3390/molecules181215501
  • Zhao, Y., Zeng, C., & Massiah, M. A. (2015). Molecular dynamics simulation reveals insights into the mechanism of unfolding by the A130T/V mutations within the MID1 zinc-binding Bbox1 domain. PLoS One, 10(4), e0124377. https://doi.org/10.1371/journal.pone.0124377
  • Zhou, W., Liu, Q., Wang, W., Yuan, X. J., Xiao, C. C., & Ye, S. D. (2022). Comprehensive network analysis reveals the targets and potential multitarget drugs of type 2 diabetes mellitus. Oxidative Medicine and Cellular Longevity, 2022, 8255550. https://doi.org/10.1155/2022/8255550

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.