236
Views
2
CrossRef citations to date
0
Altmetric
Research Article

In silico analysis of the antidepressant fluoxetine and similar drugs as inhibitors of the human protein acid sphingomyelinase: a related SARS-CoV-2 inhibition pathway

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 9562-9575 | Received 25 Mar 2022, Accepted 29 Oct 2022, Published online: 29 Nov 2022

References

  • Altamura, A. C., Moro, A. R., & Percudani, M. (1994). Clinical pharmacokinetics of fluoxetine. Clinical Pharmacokinetics, 26(3), 201–214. https://doi.org/10.2165/00003088-199426030-00004
  • Amsterdam, J. D., Fawcett, J., Quitkin, F. M., Reimherr, F. W., Rosenbaum, J. F., Michelson, D., Hornig-Rohan, M., & Beasley, C. M. (1997). Fluoxetine and norfluoxetine plasma concentrations in major depression: A multicenter study. The American Journal of Psychiatry, 154(7), 963–969.
  • Anandakrishnan, R., Aguilar, B., & Onufriev, A. V. (2012). H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Research, 40(W1), W537–W541. https://doi.org/10.1093/nar/gks375
  • Barenholz, Y., & Thompson, T. E. (1999). Sphingomyelin: Biophysical aspects. Chemistry and Physics of Lipids, 102(1–2), 29–34. https://doi.org/10.1016/S0009-3084(99)00072-9
  • Carpinteiro, A., Edwards, M. J., Hoffmann, M., Kochs, G., Gripp, B., Weigang, S., Adams, C., Carpinteiro, E., Gulbins, A., Keitsch, S., Sehl, C., Soddermann, M., Wilker, B., Kamler, M., Berstch, T., Lang, K. S., Patel, S., Wilson, G. C., Walter, S., … Gulbins, E. (2020). Pharmacological inhibition of acid sphingomyelinase prevents uptake of SARS-CoV-2 by epithelial cells. Cell Reports Medicine, 1(8), 100142.
  • Case, D. A., Aktulga, H. M., Belfon, K. A. A., & Ben-Shalom, I. (2021). Amber 2021. https://ambermd.org/doc12/Amber21.pdf
  • Cavasotto, C. N., & Di Filippo, J. I. (2021). In silico drug repurposing for COVID-19: Targeting SARS-CoV-2 proteins through docking and consensus ranking. Molecular informatics, 40, e2000115.
  • Chang, M. W., Ayeni, C., Breuer, S., & Torbett, B. E. (2010). Virtual screening for HIV protease inhibitors: A comparison of AutoDock 4 and Vina. PLoS One, 5(8), e11955. https://doi.org/10.1371/journal.pone.0011955
  • Clelland, C. L., Ramiah, K., Steinberg, L., & Clelland, J. D. (2022). Analysis of the impact of antidepressants and other medications on COVID-19 infection risk in a chronic psychiatric in-patient cohort. BJPsych Open, 8(1), 1–5. https://doi.org/10.1192/bjo.2021.1053
  • Creeden, J. F., Imami, A. S., Eby, H. M., Gillman, C., Becker, K. N., Reigle, J., Andari, E., Pan, Z. K., O’Donovan, S. M., McCullumsmith, R. E., & McCullumsmith, C. B. (2021). Fluoxetine as an anti-inflammatory therapy in SARS-CoV-2 infection. Biomedicine & Pharmacotherapy =Biomedecine & Pharmacotherapie, 138, 111437. https://doi.org/10.1016/j.biopha.2021.111437
  • Darquennes, G., Le Corre, P., Le Moine, O., & Loas, G. (2021). Association between functional inhibitors of acid sphingomyelinase (Fiasmas) and reduced risk of death in covid-19 patients: A retrospective cohort study. Pharmaceuticals, 14(3), 226–211. https://doi.org/10.3390/ph14030226
  • Dechaumes, A., Nekoua, M. P., Belouzard, S., Sane, F., Engelmann, I., Dubuisson, J., Alidjinou, E. K., & Hober, D. (2021). Fluoxetine can inhibit SARS-CoV-2 in vitro. Microorganisms, 9(2), 339–310. https://doi.org/10.3390/microorganisms9020339
  • DeVane, C. L. (1992). Pharmacokinetics of the selective serotonin reuptake inhibitors. The Journal of Clinical Psychiatry, 53, 13–20.
  • Egziabher, T. B. G., & Edwards, S. (2020). Drug synergy of combinatory treatment with remdesivir and the repurposed drugs fluoxetine 2 and itraconazole effectively impairs SARS-CoV-2 infection in vitro. Africa’s Potential Ecology Intensified Agriculture, 53, 1689–1699.
  • Eugene, A. R. (2021). Fluoxetine pharmacokinetics and tissue distribution suggest a possible role in reducing SARS-CoV-2 titers. F1000Research, 10, 477. https://doi.org/10.12688/f1000research.53275.1
  • Ferguson, J. M., & Hill, H. (2006). Pharmacokinetics of fluoxetine in elderly men and women. Gerontology, 52(1), 45–50. https://doi.org/10.1159/000089825
  • Flores, J. R., Nevado, J. J. B., Peñalvo, G. C., & Diez, N. M. (2005). Development and validation method for determination of fluoxetine and its main metabolite norfluoxetine by nonaqueous capillary electrophoresis in human urine. Talanta, 65(1), 163–171. https://doi.org/10.1016/j.talanta.2004.05.058
  • Fred, S. M., Kuivanen, S., Ugurlu, H., Casarotto, P. C., Levanov, L., Saksela, K., Vapalahti, O., & C, E. (2021). Antidepressant and antipsychotic drugs reduce viral infection by SARS-CoV-2 and fluoxetine show antiviral activity against the novel variants in vitro. Frontiers in Pharmacology,12, 755600.
  • Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., & Onufriev, A. (2005). H++: A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33, W368–W371. https://doi.org/10.1093/nar/gki464
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
  • Hoertel, N., Sánchez-Rico, M., Gulbins, E. Kornhuber, J., Carpinteiro, A., Lenze, E. J., Reiersen, A. M., Abellan, M., de la Muela, P., Vernet, R., Blanco, C., Cougoule, C., Beeker, N., Neuraz, A., Gorwood, P., Alvarado, J. M., & Meneton, P. (2021). Association between FIASMAs and reduced risk of intubation or death in individuals hospitalized for severe COVID‐19: An observational multicenter study. Clinical Pharmacology & Therapeutics, 110(6), 1498–1511.
  • Hoertel, N., Sánchez-Rico, M., Vernet, R., Beeker, N., Jannot, A.-S., Neuraz, A., Salamanca, E., Paris, N., Daniel, C., Gramfort, A., Lemaitre, G., Bernaux, M., Bellamine, A., Lemogne, C., Airagnes, G., Burgun, A., & Limosin, F. (2021). Association between antidepressant use and reduced risk of intubation or death in hospitalized patients with COVID-19: Results from an observational study. Molecular Psychiatry, 26(9), 5199–5212. https://doi.org/10.1038/s41380-021-01021-4
  • Hoertel, N., Sanchez-Rico, M., Vernet, R., Beeker, N., Jannot, A.-S., Neuraz, A., Salamanca, E., Paris, N., Daniel, C., Gramfort, A., Lemaitre, G., Bernaux, M., Bellamine, A., Lemogne, C., Airagnes, G., & Burgun, A. (2020). Association between SSRI antidepressant use and reduced risk of intubation or death. medRxiv, 1–13. https://doi.org/10.1101/2020.07.09.20143339v2
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Joffe, H., Guthrie, K. A., LaCroix, A. Z., Reed, S. D., Ensrud, K. E., Manson, J. E., Newton, K. M., Freeman, E. W., Anderson, G. L., Larson, J. C., Hunt, J., Shifren, J., Rexrode, K. M., Caan, B., Sternfeld, B., Carpenter, J. S., & Cohen, L. (2014). Low-dose estradiol and the serotonin-norepinephrine reuptake inhibitor venlafaxine for vasomotor symptoms: A randomized clinical trial. JAMA Internal Medicine, 174(7), 1058–1066. https://doi.org/10.1001/jamainternmed.2014.1891
  • Kaserer, T., Höferl, M., Müller, K., Elmer, S., Ganzera, M., Jäger, W., & Schuster, D. (2015). In silico predictions of drug–drug interactions caused by CYP1A2, 2C9 and 3A4 inhibition – A comparative study of virtual screening performance. Molecular informatics, 34(6–7), 431–457. https://doi.org/10.1002/minf.201400192
  • Kornhuber, J., Tripal, P., Reichel, M., Mühle, C., Rhein, C., Muehlbacher, M., Groemer, T. W., & Gulbins, E. (2010). Functional inhibitors of acid sphingomyelinase (FIASMAs): A novel pharmacological group of drugs with broad clinical applications. Cellular Physiology and Biochemistry, 26(1), 9–20. https://doi.org/10.1159/000315101
  • Koulgi, S., Jani, V., Uppuladinne, M., Sonavane, U., Nath, A. K., Darbari, H., & Joshi, R. (2020). Drug repurposing studies targeting SARS-CoV-2: An ensemble docking approach on drug target 3C-like protease (3CLpro). Journal of Biomolecular Structure and Dynamics, 39(15), 5735–5755.
  • Lafourcade, C., Sobo, K., Kieffer-Jaquinod, S., Garin, J., & van der Goot, F. G. (2008). Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization. PLoS One, 3(7), e2758. https://doi.org/10.1371/journal.pone.0002758
  • Lancaster, S. G., & Gonzalez, J. P. (1989). Fluoxetine: A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs, 37(2), 123–140. https://doi.org/10.2165/00003495-198937020-00003
  • Le Corre Pharm, P., & Loas, G. (2021). Repurposing functional inhibitors of acid sphingomyelinase (fiasmas): An opportunity against SARS-CoV-2 infection? Journal of Clinical Pharmacy and Therapeutics, 46(5), 1213–1219.
  • Madshus, I. H. (1991). Regulation of intracellular pH in eukaryotic cells. International Review of Cytology, 127, 111–173.
  • Marshansky, V., & Futai, M. (2008). The V-type H+-ATPase in vesicular trafficking: Targeting, regulation and function. Current Opinion in Cell Biology, 20(4), 415–426.
  • Norman, T. R., Gupta, R. K., Burrows, G. D., Parker, G., & Judd, F. K. (1993). Relationship between antidepressant response and plasma concentrations of fluoxetine and norfluoxetine. International Clinical Psychopharmacology, 8(1), 25–29.
  • Oehme, D. P., Brownlee, R. T. C., & Wilson, D. J. D. (2012). Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease. Journal of Computational Chemistry, 33(32), 2566–2580. https://doi.org/10.1002/jcc.23095
  • Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., Guo, L., Guo, R., Chen, T., Hu, J., Xiang, Z., Mu, Z., Chen, X., Chen, J., Hu, K., Jin, Q., Wang, J., & Qian, Z. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications, 11(1), 1620. https://doi.org/10.1038/s41467-020-15562-9
  • Pato, M. T., D. L. Murphy, C. L. DeVane. (1991). Sustained plasma concentrations of fluoxetine and/or norfluoxetine four and eight weeks after fluoxetine discontinuation. Journal of Clinical Psychopharmacology, 11, 25.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.
  • Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., Norris, A., Sanseau, P., Cavalla, D., & Pirmohamed, M. (2019). Drug repurposing: Progress, challenges and recommendations. Nature Reviews. Drug Discovery, 18(1), 41–58. https://doi.org/10.1038/nrd.2018.168
  • Rauchman, S. H., Mendelson, S. G., Rauchman, C., Kasselman, J., Pinkhasov, A., & Reiss, A. B. (2021). Ongoing use of SSRIs and the hospital course of COVID-19 patients: A retrospective outcome analysis. medRxiv. https://doi.org/10.1101/2021.10.25.21265218v1
  • Reijngoud, D. J., & Tager, J. M. (1973). Measurement of intralysosomal pH. Biochimica et Biophysica Acta (BBA) - General Subjects, 297(1), 174–178. https://doi.org/10.1016/0304-4165(73)90061-5
  • Risley, D. S., Sharp, V. S., & Palmer, J. R. (1996). Evaluation of a new pepsin enzyme chiral stationary phase for the optimized separation of seproxetine (S-norfluoxetine) from R-norfluoxetine. Journal of Liquid Chromatography & Related Technologies, 19(3), 449–465. https://doi.org/10.1080/10826079608001227
  • Schloer, S., Brunotte, L., Goretzko, J., Mecate-Zambrano, A., Korthals, N., Gerke, V., Ludwig, S., & Rescher, U. (2020). Targeting the endolysosomal host-SARS-CoV-2 interface by clinically licensed functional inhibitors of acid sphingomyelinase (FIASMA) including the antidepressant fluoxetine. Emerging Microbes & Infections, 9(1), 2245–2255. https://doi.org/10.1080/22221751.2020.1829082
  • Stewart, J. J. P. (2007). Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, 13(12), 1173–1213. https://doi.org/10.1007/s00894-007-0233-4
  • Tejani-Butt, S. M., Brunswick, D. J., & Frazer, A. (1990). Nisoxetine: A new radioligand for norepinephrine uptake sites in brain. European Journal of Pharmacology, 191(2), 239–243. https://doi.org/10.1016/0014-2999(90)94155-Q
  • Trott, O., & Olson, A. J. (2012). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading OLEG. Journal of Computational Chemistry, 32, 174–182.
  • Vadlamudi, Y., Muthu, K., & M, S. K. (2016). Structural exploration of acid sphingomyelinase at different physiological pH through molecular dynamics and docking studies. RSC Advances, 6(78), 74859–74873. https://doi.org/10.1039/C6RA16584B
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • White, J. M., & Whittaker, G. R. (2016). Fusion of enveloped viruses in endosomes. Traffic (Copenhagen, Denmark), 17(6), 593–614. https://doi.org/10.1111/tra.12389
  • Xiong, Z.-J., Huang, J., Poda, G., Pomès, R., & Privé, G. G. (2016). Structure of human acid sphingomyelinase reveals the role of the saposin domain in activating substrate hydrolysis. Journal of Molecular Biology, 428(15), 3026–3042.
  • Yu, G., Li, G.-F., & Markowitz, J. S. (2016). Atomoxetine: A review of its pharmacokinetics and pharmacogenomics relative to drug disposition. Journal of Child and Adolescent Psychopharmacology, 26(4), 314–326.
  • Zhou, Y.-F., Metcalf, M. C., Garman, S. C., Edmunds, T., Qiu, H., & Wei, R. R. (2016). Human acid sphingomyelinase structures provide insight to molecular basis of Niemann-Pick disease. Nature Communications, 7(1), 13082. https://doi.org/10.1038/ncomms13082
  • Zimniak, M., Kirschner, L., Hilpert, H., Geiger, N., Danov, O., Oberwinkler, H., Steinke, M., Sewald, K., Seibel, J., & Bodem, J. (2021). The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2 in human lung tissue. Scientific Reports, 11(1), 4–8. https://doi.org/10.1038/s41598-021-85049-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.