143
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Molecular dynamics and free energy calculations of clozapine bound to D2 and H1 receptors reveal a cardiometabolic mitigated derivative

ORCID Icon, ORCID Icon & ORCID Icon
Pages 9313-9325 | Received 24 May 2022, Accepted 12 Nov 2022, Published online: 23 Nov 2022

References

  • Abdelrahman, Y., Fararjeh, M., Abdel-Razeq, W., Mohammad, M. K., & Bustanji, Y. (2014). Assessment of possible immunotoxicity of the antipsychotic drug clozapine. The Journal of Pharmacy and Pharmacology, 66(3), 378–386. https://doi.org/10.1111/jphp.12150
  • Alder, B. J., & Wainwright, T. E. (1959). Studies in molecular dynamics. I. General method. The Journal of Chemical Physics, 31(2), 459–466. https://doi.org/10.1063/1.1730376
  • Alvir, J. M., Lieberman, J. A., Safferman, A. Z., Schwimmer, J. L., & Schaaf, J. A. (1993). Clozapine-induced agranulocytosis. Incidence and risk factors in the United States. The New England Journal of Medicine, 329(3), 162–167. https://doi.org/10.1056/NEJM199307153290303
  • Apiquian, R., Ulloa, E., Fresan, A., Loyzaga, C., Nicolini, H., & Kapur, S. (2003). Amoxapine shows atypical antipsychotic effects in patients with schizophrenia: Results from a prospective open-label study. Schizophrenia Research, 59(1), 35–39. https://doi.org/10.1016/S0920-9964(01)00342-5
  • Bakker, R. A., Wieland, K., Timmerman, H., & Leurs, R. (2000). Constitutive activity of the histamine H1 receptor reveals inverse agonism of histamine H1 receptor antagonists. European Journal of Pharmacology, 387(1), R5–R7. https://doi.org/10.1016/S0014-2999(99)00803-1
  • Ballesteros, J. A., & Weinstein, H. (1995). Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods in Neurosciences, 25(C), 366–428. https://doi.org/10.1016/S1043-9471(05)80049-7
  • Bennett, C. H. (1976). Efficient Estimation of Free Energy Differences from Monte Carlo Data. Journal of Computational Physics, 22(2), 245–268. https://doi.org/10.1016/0021-9991(76)90078-4
  • Calderon, R. O., Attema, B., & DeVries, G. H. (1995). Lipid composition of neuronal cell bodies and neurites from cultured dorsal root ganglia. Journal of Neurochemistry, 64(1), 424–429.
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Case, D. A., Walker, R. C., Cheatham, T. E., Simmerling, C., Roitberg, A., Merz, K. M., Luo, R., & Darden, T. (2018). Amber 18. University of California.
  • Clark, A. J., Gindin, T., Zhang, B., Wang, L., Abel, R., Murret, C. S., Xu, F., Bao, A., Lu, N. J., Zhou, T., Kwong, P. D., Shapiro, L., Honig, B., & Friesner, R. A. (2017). Free energy perturbation calculation of relative binding free energy between broadly neutralizing antibodies and the gp120 glycoprotein of HIV-1. Journal of Molecular Biology, 429(7), 930–947. https://doi.org/10.1016/j.jmb.2016.11.021
  • Consortium, T. U. (2018). UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515. https://doi.org/10.1093/nar/gky1049
  • Consumer Reports Best Buy Drugs. (2012). Evaluating prescription drugs used to treat: Alzheimer’s Disease 20.
  • Deshmukh, R., & Franco, K. (2003). Managing weight gain as a side effect of antidepressant therapy. Cleveland Clinic Journal of Medicine, 70(7), 614–614. https://doi.org/10.3949/ccjm.70.7.614
  • Deupi, X., Edwards, P., Singhal, A., Nickle, B., Oprian, D., Schertler, G., & Standfuss, J. (2012). Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. Proceedings of the National Academy of Sciences of the United States of America, 109(1), 119–124. https://doi.org/10.1073/pnas.1114089108
  • Fernández, J., Alonso, J. M., Andrés, J. I., Cid, J. M., Díaz, A., Iturrino, L., Gil, P., Megens, A., Sipido, V. K., & Trabanco, A. A. (2005). Discovery of new tetracyclic tetrahydrofuran derivatives as potential broad-spectrum psychotropic agents. Journal of Medicinal Chemistry, 48(6), 1709–1712. https://doi.org/10.1021/jm049632c
  • Gao, S., Moran, T. H., Lopaschuk, G. D., & Butler, A. A. (2013). Hypothalamic malonyl-CoA and the control of food intake. Physiology & Behavior, 122, 17–24. https://doi.org/10.1016/j.physbeh.2013.07.014
  • Gerebtzoff, G., Li-Blatter, X., Fischer, H., Frentzel, A., & Seelig, A. (2004). Halogenation of drugs enhances membrane binding and permeation. Chembiochem: A European Journal of Chemical Biology, 5(5), 676–684. https://doi.org/10.1002/cbic.200400017
  • Ghoneim, O. M., Legere, J. A., Golbraikh, A., Tropsha, A., & Booth, R. G. (2006). Novel ligands for the human histamine H1 receptor: Synthesis, pharmacology, and comparative molecular field analysis studies of 2-dimethylamino-5-(6)-phenyl-1,2,3,4-tetrahydronaphthalenes. Bioorganic & Medicinal Chemistry, 14(19), 6640–6658. https://doi.org/10.1016/j.bmc.2006.05.077
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A Force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • He, M., Deng, C., & Huang, X. F. (2013). The role of hypothalamic H1 receptor antagonism in antipsychotic-induced weight gain. In CNS Drugs, 27 (6), 423–434. https://doi.org/10.1007/s40263-013-0062-1
  • Hernandes, M., Cavalcanti, S. M., Moreira, D. R., de Azevedo Junior, W., & Leite, A. C. (2010). Halogen atoms in the modern medicinal chemistry: Hints for the drug design. Current Drug Targets, 11(3), 303–314. https://doi.org/10.2174/138945010790711996
  • Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems 1. Journal of Research of the National Bureau of Standards, 49 (6), 409. (https://doi.org/10.6028/jres.049.044
  • Hirose, T., & Kikuchi, T. (2005). Aripiprazole, a novel antipsychotic agent: Dopamine D2 receptor partial agonist. The Journal of Medical Investigation, 52(Supplement), 284–290. https://doi.org/10.2152/jmi.52.284
  • Hjerde, E., Dahl, S. G., & Sylte, I. (2005). Atypical and typical antipsychotic drug interactions with the dopamine D2 receptor. European Journal of Medicinal Chemistry, 40(2), 185–194. https://doi.org/10.1016/j.ejmech.2004.10.010
  • Horio, S., Kato, T., Ogawa, M., Fujimoto, K., & Fukui, H. (2004). Two threonine residues and two serine residues in the second and third intracellular loops are both involved in histamine H1 receptor downregulation. FEBS Letters, 573(1-3), 226–230. https://doi.org/10.1016/j.febslet.2004.07.072
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Huang, W., & Levitt, D. G. (1977). Theoretical calculation of the dielectric constant of a bilayer membrane. Biophysical Journal, 17(2), 111–128. https://doi.org/10.1016/S0006-3495(77)85630-0
  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., De Groot, B. L., Grubmüller, H., & MacKerell, A. D. (2017). CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71–73. https://doi.org/10.1038/nmeth.4067
  • Humbert-Claude, M., Davenas, E., Gbahou, F., Vincent, L., & Arrang, J.-M. (2012). Involvement of histamine receptors in the atypical antipsychotic profile of clozapine: a reassessment in vitro and in vivo. Psychopharmacology, 220(1), 225–241. https://doi.org/10.1007/s00213-011-2471-5
  • Ishibashi, T., Horisawa, T., Tokuda, K., Ishiyama, T., Ogasa, M., Tagashira, R., Matsumoto, K., Nishikawa, H., Ueda, Y., Toma, S., Oki, H., Tanno, N., Saji, I., Ito, A., Ohno, Y., & Nakamura, M. (2010). Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. The Journal of Pharmacology and Experimental Therapeutics, 334(1), 171–181. https://doi.org/10.1124/jpet.110.167346
  • Jafari, S., Bouillon, M. E., Huang, X. F., Pyne, S. G., & Fernandez-Enright, F. (2012). Novel olanzapine analogues presenting a reduced H 1 receptor affinity and retained 5HT 2A/D 2 binding affinity ratio. BMC Pharmacology, 12(1), 8. https://doi.org/10.1186/1471-2210-12-8
  • Jafari, S., Fernandez-Enright, F., & Huang, X.-F. (2012). Structural contributions of antipsychotic drugs to their therapeutic profiles and metabolic side effects. Journal of Neurochemistry, 120(3), 371–384. https://doi.org/10.1111/j.1471-4159.2011.07590.x
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Joshua, A. V., Sharma, S. K., Strelkov, A., Scott, J. R., Martin-Iverson, M. T., Abrams, D. N., Silverstone, P. H., & McEwan, A. J. B. (2007). Synthesis and biodistribution of 8-iodo-11-(4-methylpiperazino)-5H-dibenzo[b,e][1,4]-diazepine: Iozapine. Bioorganic & Medicinal Chemistry Letters, 17(14), 4066–4069. https://doi.org/10.1016/j.bmcl.2007.04.069
  • Kapur, S., Zipursky, R., Jones, C., Remington, G., & Houle, S. (2000). Relationship between dopamine D2occupancy, clinical response, and side effects: A double-blind PET study of first-episode schizophrenia. The American Journal of Psychiatry, 157(4), 514–520. https://doi.org/10.1176/appi.ajp.157.4.514
  • Katritch, V., Cherezov, V., & Stevens, R. C. (2013). Structure-function of the G protein-coupled receptor superfamily. Annual Review of Pharmacology and Toxicology, 53, 531–556. https://doi.org/10.1146/annurev-pharmtox-032112-135923
  • Kesby, J. P., Eyles, D. W., McGrath, J. J., & Scott, J. G. (2018). Dopamine, psychosis and schizophrenia: The widening gap between basic and clinical neuroscience. In Translational Psychiatry (Vol. 8, Issue 1). Nature Publishing Group. https://doi.org/10.1038/s41398-017-0071-9
  • Kobilka, B. K., & Deupi, X. (2007). Conformational complexity of G-protein-coupled receptors. Trends in Pharmacological Sciences, 28(8), 397–406. https://doi.org/10.1016/J.TIPS.2007.06.003
  • Kurczab, R., Kucwaj-Brysz, K., & Śliwa, P. (2019). The significance of halogen bonding in ligand–receptor interactions: The lesson learned from molecular dynamic simulations of the D4 Receptor. Molecules, 25(1), 91. https://doi.org/10.3390/molecules25010091
  • Latorraca, N. R., Venkatakrishnan, A. J., & Dror, R. O. (2017). GPCR dynamics: Structures in motion. Chemical Reviews, 117(1), 139–155. https://doi.org/10.1021/acs.chemrev.6b00177
  • Leucht, S., Cipriani, A., Spineli, L., Mavridis, D., Örey, D., Richter, F., Samara, M., Barbui, C., Engel, R. R., Geddes, J. R., Kissling, W., Stapf, M. P., Lässig, B., Salanti, G., & Davis, J. M. (2013). Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: A multiple-treatments meta-analysis. The Lancet, 382(9896), 951–962. https://doi.org/10.1016/S0140-6736(13)60733-3
  • Li, H., Robertson, A. D., & Jensen, J. H. (2005). Very fast empirical prediction and rationalization of protein pK a values. Proteins, 61(4), 704–721. https://doi.org/10.1002/prot.20660
  • Liu, P., Dehez, F., Cai, W., & Chipot, C. (2012). A toolkit for the analysis of free-energy perturbation calculations. Journal of Chemical Theory and Computation, 8(8), 2606–2616. https://doi.org/10.1021/ct300242f
  • Lomize, M. A., Lomize, A. L., Pogozheva, I. D., & Mosberg, H. I. (2006). OPM: Orientations of proteins in membranes database. Bioinformatics (Oxford, England), 22(5), 623–625. https://doi.org/10.1093/bioinformatics/btk023
  • Mauri, M. C., Paletta, S., Maffini, M., Colasanti, A., Dragogna, F., Di Pace, C., & Altamura, A. C. (2014). Clinical pharmacology of atypical antipsychotics: An update. EXCLI Journal, (13, 1163–1191. https://doi.org/10.17877/DE290R-7037
  • Montastruc, F., Palmaro, A., Bagheri, H., Schmitt, L., Montastruc, J.-L., & Lapeyre-Mestre, M. (2015). Role of serotonin 5-HT2C and histamine H1 receptors in antipsychotic-induced diabetes: A pharmacoepidemiological-pharmacodynamic study in VigiBase. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 25(10), 1556–1565.
  • Morris, G. M., Ruth, H., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nijmeijer, S., Leurs, R., & Vischer, H. F. (2010). Constitutive activity of the histamine H 1 receptor. Methods in Enzymology, 484 (C), 127–147. https://doi.org/10.1016/B978-0-12-381298-8.00007-1
  • Nygaard, R., Zou, Y., Dror, R. O., Mildorf, T. J., Arlow, D. H., Manglik, A., Pan, A. C., Liu, C. W., Fung, J. J., Bokoch, M. P., Thian, F. S., Kobilka, T. S., Shaw, D. E., Mueller, L., Prosser, R. S., & Kobilka, B. K. (2013). The dynamic process of β2-adrenergic receptor activation. Cell, 152(3), 532–542. https://doi.org/10.1016/j.cell.2013.01.008
  • Ohta, K., Hayashi, H., Mizuguchi, H., Kagamiyama, H., Fujimoto, K., & Fukui, H. (1994). Site-directed mutagenesis of the histamine H1 receptor: Roles of aspartic acid107, asparagine198 and threonine194. Biochemical and Biophysical Research Communications, 203(2), 1096–1101. https://doi.org/10.1006/bbrc.1994.2295
  • Patel, K. R., Cherian, J., Gohil, K., & Atkinson, D. (2014). Schizophrenia: overview and treatment options. P & T : A Peer-Reviewed Journal for Formulary Management, 39(9), 638–645.
  • Pauwels, P. J., Tardif, S., Wurch, T., & Colpaert, F. C. (2001). Real-time analysis of dopamine: Antagonist interactions at recombinant human D2long receptor upon modulation of its activation state. British Journal of Pharmacology, 134(1), 88–97. https://doi.org/10.1038/sj.bjp.0704243
  • Peng, Y., McCorvy, J. D., Harpsøe, K., Lansu, K., Yuan, S., Popov, P., Qu, L., Pu, M., Che, T., Nikolajsen, L. F., Huang, X.-P., Wu, Y., Shen, L., Bjørn-Yoshimoto, W. E., Ding, K., Wacker, D., Han, G. W., Cheng, J., Katritch, V., … Liu, Z.-J. (2018). 5-HT2C receptor structures reveal the structural basis of GPCR polypharmacology. Cell, 172(4), 719–730.e14. https://doi.org/10.1016/j.cell.2018.01.001
  • Petrova, S. S., & Solov’ev, A. D. (1997). The origin of the method of steepest descent. Historia Mathematica, 24(4), 361–375. https://doi.org/10.1006/hmat.1996.2146
  • Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., Buch, R., Fiorin, G., Hénin, J., Jiang, W., McGreevy, R., Melo, M. C. R., Radak, B. K., Skeel, R. D., Singharoy, A., Wang, Y., Roux, B., Aksimentiev, A., Luthey-Schulten, Z., … Tajkhorshid, E. (2020). Scalable molecular dynamics on CPU and GPU architectures with NAMD. Journal of Chemical Physics, 153(4), 044130. https://doi.org/10.1063/5.0014475
  • Pohorille, A., Jarzynski, C., & Chipot, C. (2010). Good practices in free-energy calculations. The Journal of Physical Chemistry B, 114(32), 10235–10253. https://doi.org/10.1021/jp102971x
  • Preininger, A. M., Meiler, J., & Hamm, H. (2013). Conformational flexibility and structural dynamics in GPCR-mediated G protein activation: a perspective. Journal of Molecular Biology, 425(13), 2288–2298. https://doi.org/10.1016/J.JMB.2013.04.011
  • Reynolds, G. P., Hill, M. J., & Kirk, S. L. (2006). The S-HT2C receptor and antipsychotic-induced weight gain – Mechanisms and genetics. Journal of Psychopharmacology (Oxford, England), 20(4 Suppl), 15–18. https://doi.org/10.1177/1359786806066040
  • Richelson, E. (1996). Synaptic effects of antidepressants. Journal of Clinical Psychopharmacology, 16(Suppl. 2), 1S-7S. https://doi.org/10.1097/00004714-199606002-00001
  • Ring, A. M., Manglik, A., Kruse, A. C., Enos, M. D., Weis, W. I., Garcia, K. C., & Kobilka, B. K. (2013). Adrenaline-activated structure of β 2-adrenoceptor stabilized by an engineered nanobody. Nature, 502(7472), 575–579. https://doi.org/10.1038/nature12572
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Schmidt, A. W., Lebel, L. A., Howard, H. R., & Zorn, S. H. (2001). Ziprasidone: A novel antipsychotic agent with a unique human receptor binding profile. European Journal of Pharmacology, 425(3), 197–201. https://doi.org/10.1016/S0014-2999(01)01188-8
  • Schotte, A., Janssen, P. F. M., Gommeren, W., Luyten, W. H. M. L., Van Gompel, P., Lesage, A. S., De Loore, K., & Leysen, J. E. (1996). Risperidone compared with new and reference antipsychotic drugs: In vitro and in vivo receptor binding. Psychopharmacology, 124(1-2), 57–73. https://doi.org/10.1007/BF02245606
  • Schrödinger Release 2020-2: Maestro, Schrödinger, LLC, New York, NY, 2020. (n.d).
  • Seeman, P. (2010). Dopamine D2 receptors as treatment targets in schizophrenia. Clinical Schizophrenia & Related Psychoses, 4 (1), 56–73. https://doi.org/10.3371/CSRP.4.1.5
  • Shimamura, T., Shiroishi, M., Weyand, S., Tsujimoto, H., Winter, G., Katritch, V., Abagyan, R., Cherezov, V., Liu, W., Han, G. W., Kobayashi, T., Stevens, R. C., & Iwata, S. (2011). Structure of the human histamine H1 receptor complex with doxepin. Nature, 475(7354), 65–70. https://doi.org/10.2210/PDB3RZE/PDB
  • Simpson, M. M., Goetz, R. R., Devlin, M. J., Goetz, S. A., & Walsh, B. T. (2001). Weight gain and antipsychotic medication: Differences between antipsychotic-free and treatment periods. The Journal of Clinical Psychiatry, 62(9), 694–700. https://doi.org/10.4088/JCP.v62n0906
  • Sirimulla, S., Bailey, J. B., Vegesna, R., & Narayan, M. (2013). Halogen interactions in protein–ligand complexes: Implications of halogen bonding for rational drug design. Journal of Chemical Information and Modeling, 53(11), 2781–2791. https://doi.org/10.1021/ci400257k
  • Søndergaard, C. R., Olsson, M. H. M., Rostkowski, M., & Jensen, J. H. (2011). Improved treatment of ligands and coupling effects in empirical calculation and rationalization of p K a values. Journal of Chemical Theory and Computation, 7(7), 2284–2295. https://doi.org/10.1021/ct200133y
  • Stahl, S. M., Mignon, L., & Meyer, J. M. (2009). Which comes first: Atypical antipsychotic treatment or cardiometabolic risk? Acta Psychiatrica Scandinavica, 119(3), 171–179. https://doi.org/10.1111/j.1600-0447.2008.01334.x
  • Tewksbury, A., & Olander, A. (2016). Management of antipsychotic-induced hyperprolactinemia. The Mental Health Clinician, 6(4), 185–190. https://doi.org/10.9740/mhc.2016.07.185
  • Thomas, T., Fang, Y., Yuriev, E., & Chalmers, D. K. (2016). Ligand binding pathways of clozapine and haloperidol in the dopamine D2 and D3 receptors. Journal of Chemical Information and Modeling, 56(2), 308–321. https://doi.org/10.1021/acs.jcim.5b00457
  • Trzaskowski, B., Latek, D., Yuan, S., Ghoshdastider, U., Debinski, A., & Filipek, S. (2012). Action of molecular switches in GPCRs – Theoretical and experimental studies. Current Medicinal Chemistry, 19(8), 1090–1109. https://doi.org/10.2174/092986712799320556
  • Valentin-Hansen, L., Groenen, M., Nygaard, R., Frimurer, T. M., Holliday, N. D., & Schwartz, T. W. (2012). The arginine of the DRY motif in transmembrane segment III functions as a balancing micro-switch in the activation of the β2-adrenergic receptor. The Journal of Biological Chemistry, 287(38), 31973–31982. https://doi.org/10.1074/jbc.M112.348565
  • Wang, S., Che, T., Levit, A., Shoichet, B. K., Wacker, D., & Roth, B. L. (2018). Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature, 555(7695), 269–273. https://doi.org/10.1038/nature25758
  • Weber, J., Siddiqui, M. A. A., Wagstaff, A. J., & McCormack, P. L. (2010). Low-dose doxepin: In the treatment of insomnia. In CNS Drugs, 24(8), 713–720. https://doi.org/10.2165/11200810-000000000-00000
  • Weis, W. I., & Kobilka, B. K. (2018). The molecular basis of G protein–coupled receptor activation. Annual Review of Biochemistry, 87(1), 897–919. https://doi.org/10.1146/annurev-biochem-060614-033910
  • Wenthur, C. J., & Lindsley, C. W. (2013). Classics in chemical neuroscience: clozapine. ACS Chemical Neuroscience, 4(7), 1018–1025. https://doi.org/10.1021/cn400121z
  • White, K. L., Eddy, M. T., Gao, Z.-G., Han, G. W., Lian, T., Deary, A., Patel, N., Jacobson, K. A., Katritch, V., & Stevens, R. C. (2018). Structural connection between activation microswitch and allosteric sodium site in GPCR signaling. Structure (London, England: 1993), 26(2), 259–269.e5. https://doi.org/10.1016/j.str.2017.12.013
  • Wieland, K., Laak, A. M., Smit, M. J., Kühne, R., Timmerman, H., & Leurs, R. (1999). Mutational analysis of the antagonist-binding site of the histamine H1 receptor. The Journal of Biological Chemistry, 274(42), 29994–30000. https://doi.org/10.1074/jbc.274.42.29994
  • Yuan, S., Filipek, S., Palczewski, K., & Vogel, H. (2014). Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway. Nature Communications, 5(1), 4733. https://doi.org/10.1038/ncomms5733
  • Zhang, B., Albaker, A., Plouffe, B., Lefebvre, C., & Tiberi, M. (2014). Constitutive activities and inverse agonism in dopamine receptors. In Advances in pharmacology. (Vol. 70, pp. 175–214) Academic Press Inc. https://doi.org/10.1016/B978-0-12-417197-8.00007-9
  • Zhang, J., Yang, J., Jang, R., & Zhang, Y. (2015). GPCR-I-TASSER: A hybrid approach to G protein-coupled receptor structure modeling and the application to the human genome. Structure (London, England: 1993), 23(8), 1538–1549. https://doi.org/10.1016/j.str.2015.06.007
  • Zwanzig, R. W. (1954). High-temperature equation of state by a perturbation method. I. nonpolar gases. The Journal of Chemical Physics, 22(8), 1420–1426. https://doi.org/10.1063/1.1740409

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.