493
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Differentiation of osteoblasts: the links between essential transcription factors

, , , , , , & ORCID Icon show all
Pages 10257-10276 | Received 30 May 2022, Accepted 12 Nov 2022, Published online: 24 Nov 2022

References

  • Almeida, M., Iyer, S., Martin-Millan, M., Bartell, S. M., Han, L., Ambrogini, E., Onal, M., Xiong, J., Weinstein, R. S., Jilka, R. L., O'Brien, C. A., & Manolagas, S. C. (2013). Estrogen receptor-α signaling in osteoblast progenitors stimulates cortical bone accrual. The Journal of Clinical Investigation, 123(1), 394–404. https://doi.org/10.1172/JCI65910
  • Amarasekara, D. S., Kim, S., & Rho, J. (2021). Regulation of osteoblast differentiation by cytokine networks. International Journal of Molecular Sciences, 22(6), 2851. https://doi.org/10.3390/ijms22062851
  • Ambrosi, T. H., Scialdone, A., Graja, A., Gohlke, S., Jank, A. M., Bocian, C., Woelk, L., Fan, H., Logan, D. W., Schürmann, A., Saraiva, L. R., & Schulz, T. J. (2017). Adipocyte Accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell, 20(6), 771–784.e6. https://doi.org/10.1016/j.stem.2017.02.009
  • Aurilia, C., Donati, S., Palmini, G., Miglietta, F., Iantomasi, T., & Brandi, M. L. (2021). The involvement of long non-coding RNAs in bone. International Journal of Molecular Sciences, 22(8), 3909. https://doi.org/10.3390/ijms22083909
  • Baglìo, S. R., Devescovi, V., Granchi, D., & Baldini, N. (2013). MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31. Gene, 527(1), 321–331. https://doi.org/10.1016/j.gene.2013.06.021
  • Balagangadharan, K., Viji Chandran, S., Arumugam, B., Saravanan, S., Devanand Venkatasubbu, G., & Selvamurugan, N. (2018). Chitosan/nano-hydroxyapatite/nano-zirconium dioxide scaffolds with miR-590-5p for bone regeneration. International Journal of Biological Macromolecules, 111, 953–958. https://doi.org/10.1016/j.ijbiomac.2018.01.122
  • Baldini, N., Cenni, E., Ciapetti, G., Granchi, D., & Savarino, L. (2009). Bone repair and regeneration. In J. A. Planell (Ed.), Bone Repair Biomaterials (pp. 69–105). Woodhead Publishing Limited. https://doi.org/10.1533/9781845696610.1.69
  • Barrett, S. P., &Salzman, J. (2016). Circular RNAs: analysis, expression and potential functions. Development (Cambridge, England), 143(11), 1838–1847. 10.1242/dev.128074 27246710
  • Bassi, A., Gough, J., Zakikhani, M., & Downes, S. (2011). Bone tissue regeneration. In L. A. Bosworth & S. Downes (Eds.), Electrospinning for tissue regeneration (pp. 93–110). Woodhead Publishing Limited. https://doi.org/10.1533/9780857092915.2.93
  • Beermann, J., Piccoli, M. T., Viereck, J., & Thum, T. (2016). Non-coding RNAs in development and disease: Background, mechanisms, and therapeutic approaches. Physiological Reviews, 96(4), 1297–1325. https://doi.org/10.1152/physrev.00041.2015
  • Berendsen, A. D., &Olsen, B. R. (2015). Bone development. Bone, 80, 14–18. 10.1016/j.bone.2015.04.035 26453494
  • Bialek, P., Kern, B., Yang, X., Schrock, M., Sosic, D., Hong, N., Wu, H., Yu, K., Ornitz, D. M., Olson, E. N., Justice, M. J., & Karsenty, G. (2004). A twist code determines the onset of osteoblast differentiation. Developmental Cell, 6(3), 423–435. https://doi.org/10.1016/S1534-5807(04)00058-9
  • Bidwell, J. P., Van Wijnen, A. J., Fey, E. G., Dworetzky, S., Penman, S., Stein, J. L., Lian, J. B., & Stein, G. S. (1993). Osteocalcin gene promoter-binding factors are tissue-specific nuclear matrix components. Proceedings of the National Academy of Sciences of the United States of America, 90(8), 3162–3166. https://doi.org/10.1073/pnas.90.8.3162
  • Cai, N., Li, C., & Wang, F. (2019). Silencing of LncRNA-ANCR promotes the osteogenesis of osteoblast cells in postmenopausal osteoporosis via targeting EZH2 and RUNX2. Yonsei Medical Journal, 60(8), 751–759. https://doi.org/10.3349/ymj.2019.60.8.751
  • Camp, E., Pribadi, C., Anderson, P. J., Zannettino, A., & Gronthos, S. (2018). miRNA-376c-3p mediates TWIST-1 inhibition of bone marrow-derived stromal cell osteogenesis and can reduce aberrant bone formation of TWIST-1 haploinsufficient calvarial cells. Stem Cells and Development, 27(23), 1621–1633. https://doi.org/10.1089/scd.2018.0083
  • Capulli, M., Paone, R., & Rucci, N. (2014). Osteoblast and osteocyte: Games without frontiers. Archives of Biochemistry and Biophysics, 561(May), 3–12. https://doi.org/10.1016/j.abb.2014.05.003
  • Chan, W., Tan, Z., To, M., & Chan, D. (2021). Regulation and role of transcription factors in osteogenesis. International Journal of Molecular Sciences, 22(11), 5445. https://doi.org/10.3390/ijms22115445
  • Chen, G.,Deng, C., &Li, Y.-P. (2012). TGF-β and BMP signaling in osteoblast differentiation and bone formation. International Journal of Biological Sciences, 8(2), 272–288. 10.7150/ijbs.2929 22298955
  • Chen, F., Bi, D., Cheng, C., Ma, S., Liu, Y., & Cheng, K. (2019). Bone morphogenetic protein 7 enhances the osteogenic differentiation of human dermal-derived CD105+ fibroblast cells through the Smad and MAPK pathways. International Journal of Molecular Medicine, 43(1), 37–46. https://doi.org/10.3892/ijmm.2018.3938
  • Chen, G., Long, C., Wang, S., Wang, Z., Chen, X., Tang, W., He, X., Bao, Z., Tan, B., Zhao, J., Xie, Y., Li, Z., Yang, D., Xiao, G., & Peng, S. (2022). Circular RNA circStag1 promotes bone regeneration by interacting with HuR. Bone Research, 10(1), 32. https://doi.org/10.1038/s41413-022-00208-x
  • Chen, G., Tang, W., Wang, S., Long, C., He, X., Yang, D., & Peng, S. (2021). Promising diagnostic and therapeutic circRNAs for skeletal and chondral disorders. International Journal of Biological Sciences, 17(5), 1428–1439. https://doi.org/10.7150/ijbs.57887
  • Chen, S., Li, Y., Zhi, S., Ding, Z., Huang, Y., Wang, W., Zheng, R., Yu, H., Wang, J., Hu, M., Miao, J., & Li, J. (2020). lncRNA Xist regulates osteoblast differentiation by sponging miR-19a-3p in aging-induced osteoporosis. Aging and Disease, 11(5), 1058–1068. https://doi.org/10.14336/AD.2019.0724
  • Cuevas-González, M. V., Suaste-Olmos, F., García-Calderón, A. G., Tovar-Carrillo, K. L., Espinosa-Cristóbal, L. F., Nava-Martínez, S. D., Cuevas-González, J. C., Zambrano-Galván, G., Saucedo-Acuña, R. A., & Donohue-Cornejo, A. (2021). Expression of MicroRNAs in periodontal disease: A systematic review. BioMed Research International, 2021, 2069410. https://doi.org/10.1155/2021/2069410
  • Damiati, L. A., & El-Messeiry, S. (2021). An overview of RNA-based scaffolds for osteogenesis. Frontiers in Molecular Biosciences, 8, 682581. https://doi.org/10.3389/fmolb.2021.682581
  • Danciu, T. E., Li, Y., Koh, A., Xiao, G., McCauley, L. K., & Franceschi, R. T. (2012). The basic helix loop helix transcription factor Twist1 is a novel regulator of ATF4 in osteoblasts. Journal of Cellular Biochemistry, 113(1), 70–79. https://doi.org/10.1002/jcb.23329
  • Davis, B. N., & Hata, A. (2009). Regulation of MicroRNA Biogenesis: A miRiad of mechanisms. Cell Communication and Signaling, 7(1), 18. https://doi.org/10.1186/1478-811X-7-18
  • Day, T. F., Guo, X., Garrett-Beal, L., & Yang, Y. (2005). Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Developmental Cell, 8(5), 739–750. https://doi.org/10.1016/j.devcel.2005.03.016
  • Deng, A., Zhang, H., Hu, M., Liu, S., Gao, Q., Wang, Y., & Guo, C. (2017). Knockdown of Indian hedgehog protein induces an inhibition of cell growth and differentiation in osteoblast MC3T3-E1 cells. Molecular Medicine Reports, 16(6), 7987–7992. https://doi.org/10.3892/mmr.2017.7669
  • Deng, Y., Wu, S., Zhou, H., Bi, X., Wang, Y., Hu, Y., Gu, P., & Fan, X. (2013). Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells. Stem Cells and Development, 22(16), 2278–2286. https://doi.org/10.1089/scd.2012.0686
  • Dobreva, G.,Chahrour, M.,Dautzenberg, M.,Chirivella, L.,Kanzler, B.,Fariñas, I.,Karsenty, G., &Grosschedl, R. (2006). SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell, 125(5), 971–986. 10.1016/j.cell.2006.05.012 16751105
  • Ducy, P., & Karsenty, G. (1995). Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Molecular and Cellular Biology, 15(4), 1858–1869. https://doi.org/10.1128/MCB.15.4.1858
  • El-Ganzuri, M. A.,Ahmed, R. R., &Bastawy, E. M. (2016). Regulatory Mechanisms of Bone Development and Function. Annals of Cytology and Pathology, 1(1), 005–017. 10.17352/acp.000002
  • Erceg, I., Tadić, T., Kronenberg, M. S., Marijanović, I., & Lichtler, A. C. (2003). Dlx5 regulation of mouse osteoblast differentiation mediated by avian retrovirus vector. Croatian Medical Journal, 44(4), 407–411.
  • FitzPatrick, D. R.,Carr, I. M.,McLaren, L.,Leek, J. P.,Wightman, P.,Williamson, K.,Gautier, P.,McGill, N.,Hayward, C.,Firth, H.,Markham, A. F.,Fantes, J. A., &Bonthron, D. T. (2003). Identification of SATB2 as the cleft palate gene on 2q32-q33. Human Molecular Genetics, 12(19), 2491–2501. 10.1093/hmg/ddg248 12915443
  • Friedenstein, A. J., Chailakhjan, R. K., & Lalykina, K. S. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics, 3(4), 393–403. https://doi.org/10.1111/j.1365-2184.1970.tb00347.x
  • Gámez, B., Rodríguez-Carballo, E., Bartrons, R., Rosa, J. L., & Ventura, F. (2013). MicroRNA-322 (miR-322) and its target protein Tob2 modulate Osterix (Osx) mRNA stability. The Journal of Biological Chemistry, 288(20), 14264–14275. https://doi.org/10.1074/jbc.M112.432104
  • Gaur, T., Lengner, C. J., Hovhannisyan, H., Bhat, R. A., Bodine, P. V., Komm, B. S., Javed, A., van Wijnen, A. J., Stein, J. L., Stein, G. S., & Lian, J. B. (2005). Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. The Journal of Biological Chemistry, 280(39), 33132–33140. https://doi.org/10.1074/jbc.M500608200
  • Ge, X., Li, Z., Zhou, Z., Xia, Y., Bian, M., & Yu, J. (2020). Circular RNA SIPA1L1 promotes osteogenesis via regulating the miR-617/Smad3 axis in dental pulp stem cells. Stem Cell Research & Therapy, 11(1), 364. https://doi.org/10.1186/s13287-020-01877-3
  • Gennari, L.,Rendina, D.,Falchetti, A., &Merlotti, D. (2019). Paget’s Disease of Bone. Calcified Tissue International, 104(5), 483–500. 10.1007/s00223-019-00522-3
  • Gibon, E.,Batke, B.,Jawad, M. U.,Fritton, K.,Rao, A.,Yao, Z.,Biswal, S.,Gambhir, S. S., &Goodman, S. B. (2012). MC3T3-E1 osteoprogenitor cells systemically migrate to a bone defect and enhance bone healing. Tissue Engineering. Part A, 18(9-10), 968–973. 10.1089/ten.TEA.2011.0545 22129134
  • Gong, Y., Lu, J., Yu, X., & Yu, Y. (2016). Expression of Sp7 in Satb2-induced osteogenic differentiation of mouse bone marrow stromal cells is regulated by microRNA-27a. Molecular and Cellular Biochemistry, 417(1–2), 7–16. https://doi.org/10.1007/s11010-016-2709-y
  • Gordon, J. A., Tye, C. E., Sampaio, A. V., Underhill, T. M., Hunter, G. K., & Goldberg, H. A. (2007). Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone, 41(3), 462–473. https://doi.org/10.1016/j.bone.2007.04.191
  • Guan, S., Zhang, Z., & Wu, J. (2022). Non-coding RNA delivery for bone tissue engineering: Progress, challenges, and potential solutions. iScience, 25(8), 104807. https://doi.org/10.1016/j.isci.2022.104807
  • Guenou, H.,Kaabeche, K.,Mée, S. L., &Marie, P. J. (2005). A role for fibroblast growth factor receptor-2 in the altered osteoblast phenotype induced by Twist haploinsufficiency in the Saethre-Chotzen syndrome. Human Molecular Genetics, 14(11), 1429–1439. 10.1093/hmg/ddi152 15829502
  • Han, S., Kuang, M., Sun, C., Wang, H., Wang, D., & Liu, Q. (2020). Circular RNA hsa_circ_0076690 acts as a prognostic biomarker in osteoporosis and regulates osteogenic differentiation of hBMSCs via sponging miR-152. Aging, 12(14), 15011–15020. https://doi.org/10.18632/aging.103560
  • Hassan, M. Q., Gordon, J. A., Beloti, M. M., Croce, C. M., van Wijnen, A. J., Stein, J. L., Stein, G. S., & Lian, J. B. (2010). A network connecting Runx2, SATB2, and the miR-23a∼27a∼24-2 cluster regulates the osteoblast differentiation program. Proceedings of the National Academy of Sciences of the United States of America, 107(46), 19879–19884. https://doi.org/10.1073/pnas.1007698107
  • He, S., Yang, S., Zhang, Y., Li, X., Gao, D., Zhong, Y., Cao, L., Ma, H., Liu, Y., Li, G., Peng, S., & Shuai, C. (2019). LncRNA ODIR1 inhibits osteogenic differentiation of hUC-MSCs through the FBXO25/H2BK120ub/H3K4me3/OSX axis. Cell Death & Disease, 10(12), 947. https://doi.org/10.1038/s41419-019-2148-2
  • He, W., Shi, X., Guo, Z., Wang, H., Kang, M., & Lv, Z. (2022). Circ_0019693 promotes osteogenic differentiation of bone marrow mesenchymal stem cell and enhances osteogenesis-coupled angiogenesis via regulating microRNA-942-5p-targeted purkinje cell protein 4 in the development of osteoporosis. Bioengineered, 13(2), 2181–2193. https://doi.org/10.1080/21655979.2021.2023982
  • Hill, T. P., Später, D., Taketo, M. M., Birchmeier, W., & Hartmann, C. (2005). Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Developmental Cell, 8(5), 727–738. https://doi.org/10.1016/j.devcel.2005.02.013
  • Hilton, M. J., Tu, X., Cook, J., Hu, H., & Long, F. (2005). Ihh controls cartilage development by antagonizing Gli3, but requires additional effectors to regulate osteoblast and vascular development. Development (Cambridge, England), 132(19), 4339–4351. https://doi.org/10.1242/dev.02025
  • Holleville, N., Matéos, S., Bontoux, M., Bollerot, K., & Monsoro-Burq, A. (2007). Dlx5 drives Runx2 expression and osteogenic differentiation in developing cranial suture mesenchyme. Developmental Biology, 304(2), 860–874. https://doi.org/10.1016/j.ydbio.2007.01.003
  • Hu, H., Hilton, M. J., Tu, X., Yu, K., Ornitz, D. M., & Long, F. (2005). Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development (Cambridge, England), 132(1), 49–60. https://doi.org/10.1242/dev.01564
  • Hu, H., Zhao, C., Zhang, P., Liu, Y., Jiang, Y., Wu, E., Xue, H., Liu, C., & Li, Z. (2019). miR-26b modulates OA induced BMSC osteogenesis through regulating GSK3β/β-catenin pathway. Experimental and Molecular Pathology, 107, 158–164. https://doi.org/10.1016/j.yexmp.2019.02.003
  • Hu, L., Liu, J., Xue, H., Panayi, A. C., Xie, X., Lin, Z., Wang, T., Xiong, Y., Hu, Y., Yan, C., Chen, L., Abududilibaier, A., Zhou, W., Mi, B., & Liu, G. (2021). miRNA-92a-3p regulates osteoblast differentiation in patients with concomitant limb fractures and TBI via IBSP/PI3K-AKT inhibition. Molecular Therapy. Nucleic Acids, 23, 1345–1359. https://doi.org/10.1016/j.omtn.2021.02.008
  • Hu, L., Yin, C., Zhao, F., Ali, A., Ma, J., & Qian, A. (2018). Mesenchymal stem cells: Cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. International Journal of Molecular Sciences, 19(2), 360. https://doi.org/10.3390/ijms19020360
  • Huang, W., Yang, S., Shao, J., & Li, Y. P. (2007). Signaling and transcriptional regulation in osteoblast commitment and differentiation. Frontiers in Bioscience, 12(8–12), 3068–3092. https://doi.org/10.2741/2296
  • Huang, Y., Meng, T., Wang, S., Zhang, H., Mues, G., Qin, C., Feng, J. Q., D'Souza, R. N., & Lu, Y. (2014). Twist1- and Twist2-haploinsufficiency results in reduced bone formation. PLoS One, 9(6), e99331. https://doi.org/10.1371/journal.pone.0099331
  • Huang, Y., Xiao, D., Huang, S., Zhuang, J., Zheng, X., Chang, Y., & Yin, D. (2020). Circular RNA YAP1 attenuates osteoporosis through up-regulation of YAP1 and activation of Wnt/β-catenin pathway. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 129, 110365. https://doi.org/10.1016/j.biopha.2020.110365
  • Huang, Y., Zheng, Y., Jia, L., & Li, W. (2015). Long noncoding RNA H19 promotes osteoblast differentiation via TGF-β1/Smad3/HDAC signaling pathway by deriving miR-675. Stem Cells (Dayton, Ohio), 33(12), 3481–3492. https://doi.org/10.1002/stem.2225
  • Iaquinta, M. R., Mazzoni, E., Bononi, I., Rotondo, J. C., Mazziotta, C., Montesi, M., Sprio, S., Tampieri, A., Tognon, M., & Martini, F. (2019). Adult stem cells for bone regeneration and repair. Frontiers in Cell and Developmental Biology, 7, 268. https://doi.org/10.3389/fcell.2019.00268
  • Ibrahim, A., Bulstrode, N. W., Whitaker, I. S., Eastwood, D. M., Dunaway, D., & Ferretti, P. (2016). Nanotechnology for stimulating osteoprogenitor differentiation. The Open Orthopaedics Journal, 10, 849–861. https://doi.org/10.2174/1874325001610010849
  • Idolazzi, L., Fassio, A., Tripi, G., Braga, V., Viapiana, O., Adami, G., Rossini, M., & Gatti, D. (2017). Circulating Dickkopf-1 and sclerostin in patients with Paget’s disease of bone. Clinical Rheumatology, 36(4), 925–928. https://doi.org/10.1007/s10067-016-3497-1
  • Inose, H., Ochi, H., Kimura, A., Fujita, K., Xu, R., Sato, S., Iwasaki, M., Sunamura, S., Takeuchi, Y., Fukumoto, S., Saito, K., Nakamura, T., Siomi, H., Ito, H., Arai, Y., Shinomiya, K., & Takeda, S. (2009). A microRNA regulatory mechanism of osteoblast differentiation. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20794–20799. https://doi.org/10.1073/pnas.0909311106
  • Ji, F., Pan, J., Shen, Z., Yang, Z., Wang, J., Bai, X., & Tao, J. (2020). The circular RNA circRNA124534 promotes osteogenic differentiation of human dental pulp stem cells through modulation of the miR-496/β-catenin pathway. Frontiers in Cell and Developmental Biology, 8, 230. https://doi.org/10.3389/fcell.2020.00230
  • Jiajun, Z., Wei, Q., Lijuan, H., Jing, R., Chunhui, L., Pairan, P., Jie, H., & Yandong, M. (2020). miRNA expression profiling of osteogenic differentiation of bone marrow mesenchymal stem cells induced by microchannel porous hydroxyapatite scaffold. Chinese Journal of Tissue Engineering Research, 24(13), 1989–1995. https://doi.org/10.3969/j.issn.2095-4344.2053
  • Jonason, J. H., Xiao, G., Zhang, M., Xing, L., & Chen, D. (2009). Post-translational regulation of Runx2 in bone and cartilage. Journal of Dental Research, 88(8), 693–703. https://doi.org/10.1177/0022034509341629
  • Jones, D. C., Wein, M. N., Oukka, M., Hofstaetter, J. G., Glimcher, M. J., & Glimcher, L. H. (2006). Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science (New York, N.Y.), 312(5777), 1223–1227. https://doi.org/10.1126/science.1126313
  • Kang, S., Bennett, C. N., Gerin, I., Rapp, L. A., Hankenson, K. D., & Macdougald, O. A. (2007). Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. The Journal of Biological Chemistry, 282(19), 14515–14524. https://doi.org/10.1074/jbc.M700030200
  • Kapinas, K., Kessler, C., Ricks, T., Gronowicz, G., & Delany, A. M. (2010). miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. The Journal of Biological Chemistry, 285(33), 25221–25231. https://doi.org/10.1074/jbc.M110.116137
  • Kawane, T., Qin, X., Jiang, Q., Miyazaki, T., Komori, H., Yoshida, C. A., Matsuura-Kawata, V., Sakane, C., Matsuo, Y., Nagai, K., Maeno, T., Date, Y., Nishimura, R., & Komori, T. (2018). Runx2 is required for the proliferation of osteoblast progenitors and induces proliferation by regulating Fgfr2 and Fgfr3. Scientific Reports, 8(1), 13551. https://doi.org/10.1038/s41598-018-31853-0
  • Khotib, J., Gani, M. A., Budiatin, A. S., Lestari, M., Rahadiansyah, E., & Ardianto, C. (2021). Signaling pathway and transcriptional regulation in osteoblasts during bone healing: Direct involvement of hydroxyapatite as a biomaterial. Pharmaceuticals (Basel, Switzerland), 14(7), 615. https://doi.org/10.3390/ph14070615
  • Kim, H. K., Lee, J. S., Kim, J. H., Seon, J. K., Park, K. S., Jeong, M. H., & Yoon, T. R. (2017). Bone-forming peptide-2 derived from BMP-7 enhances osteoblast differentiation from multipotent bone marrow stromal cells and bone formation. Experimental & Molecular Medicine, 49(5), e328. https://doi.org/10.1038/emm.2017.40
  • Kim, J. H., Liu, X., Wang, J., Chen, X., Zhang, H., Kim, S. H., Cui, J., Li, R., Zhang, W., Kong, Y., Zhang, J., Shui, W., Lamplot, J., Rogers, M. R., Zhao, C., Wang, N., Rajan, P., Tomal, J., Statz, J., … He, T.-C. (2013). Wnt signaling in bone formation and its therapeutic potential for bone diseases. Therapeutic Advances in Musculoskeletal Disease, 5(1), 13–31. https://doi.org/10.1177/1759720X12466608
  • Kim, J. M., Lin, C., Stavre, Z., Greenblatt, M. B., & Shim, J. H. (2020). Osteoblast-osteoclast communication and bone homeostasis. Cells, 9(9), 2073. https://doi.org/10.3390/cells9092073
  • Kim, R. H., Shapiro, H. S., Li, J. J., Wrana, J. L., & Sodek, J. (1994). Characterization of the human bone sialo protein (BSP) gene and its promoter sequence. Matrix Biology, 14(1), 31–40. https://doi.org/10.1016/0945-053X(94)90027-2
  • Knight, M. N., & Hankenson, K. D. (2013). Mesenchymal stem cells in bone regeneration. Advances in Wound Care, 2(6), 306–316. https://doi.org/10.1089/wound.2012.0420
  • Kobayashi, Y., Maeda, K., & Takahashi, N. (2008). Roles of Wnt signaling in bone formation and resorption. Japanese Dental Science Review, 44(1), 76–82. https://doi.org/10.1016/j.jdsr.2007.11.002
  • Komaki, M., Karakida, T., Abe, M., Oida, S., Mimori, K., Iwasaki, K., Noguchi, K., Oda, S., & Ishikawa, I. (2007). Twist negatively regulates osteoblastic differentiation in human periodontal ligament cells. Journal of Cellular Biochemistry, 100(2), 303–314. https://doi.org/10.1002/jcb.21038
  • Komori, T. (2019). Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. International Journal of Molecular Sciences, 20(7), 1694. https://doi.org/10.3390/ijms20071694
  • Kureel, J., John, A. A., Dixit, M., & Singh, D. (2017). MicroRNA-467g inhibits new bone regeneration by targeting Ihh/Runx-2 signaling. The International Journal of Biochemistry & Cell Biology, 85, 35–43. https://doi.org/10.1016/j.biocel.2017.01.018
  • Lavery, K., Hawley, S., Swain, P., Rooney, R., Falb, D., & Alaoui-Ismaili, M. H. (2009). New insights into BMP-7 mediated osteoblastic differentiation of primary human mesenchymal stem cells. Bone, 45(1), 27–41. https://doi.org/10.1016/j.bone.2009.03.656
  • Laxman, N.,Mallmin, H.,Nilsson, O., &Kindmark, A. (2016). miR-203 and miR-320 Regulate Bone Morphogenetic Protein-2-Induced Osteoblast Differentiation by Targeting Distal-Less Homeobox 5 (Dlx5). Genes, 8(1), 4.https://doi.org/10.3390/genes8010004
  • Lee, M. H., Kim, Y. J., Kim, H. J., Park, H. D., Kang, A. R., Kyung, H. M., Sung, J. H., Wozney, J. M., Kim, H. J., & Ryoo, H. M. (2003a). BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. The Journal of Biological Chemistry, 278(36), 34387–34394. https://doi.org/10.1074/jbc.M211386200
  • Lee, M. H., Kwon, T. G., Park, H. S., Wozney, J. M., & Ryoo, H. M. (2003b). BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochemical and Biophysical Research Communications, 309(3), 689–694. https://doi.org/10.1016/j.bbrc.2003.08.058
  • Lee, M. S., Lowe, G. N., Strong, D. D., Wergedal, J. E., & Glackin, C. A. (1999). TWIST, a basic helix-loop-helix transcription factor, can regulate the human osteogenic lineage. Journal of Cellular Biochemistry, 75(4), 566–577. https://doi.org/10.1002/(sici)1097-4644(19991215)75:4<566::aid-jcb3>3.0.co;2-0
  • Lekka, E., &Hall, J. (2018). Noncoding RNAs in disease. FEBS Letters, 592(17), 2884–2900. 10.1002/1873-3468.13182 29972883
  • Li, D., Tian, Y., Yin, C., Huai, Y., Zhao, Y., Su, P., Wang, X., Pei, J., Zhang, K., Yang, C., Dang, K., Jiang, S., Miao, Z., Li, M., Hao, Q., Zhang, G., & Qian, A. (2019a). Silencing of lncRNA AK045490 promotes osteoblast differentiation and bone formation via β-catenin/TCF1/Runx2 signaling axis. International Journal of Molecular Sciences, 20(24), 6229. https://doi.org/10.3390/ijms20246229
  • Li, H., Zheng, Q., Xie, X., Wang, J., Zhu, H., Hu, H., He, H., & Lu, Q. (2021). Role of exosomal non-coding RNAs in bone-related diseases. Frontiers in Cell and Developmental Biology, 9, 811666. https://doi.org/10.3389/fcell.2021.811666
  • Li, J., Zhang, H., Yang, C., Li, Y., & Dai, Z. (2016). An overview of osteocalcin progress. Journal of Bone and Mineral Metabolism, 34(4), 367–379. https://doi.org/10.1007/s00774-015-0734-7
  • Li, X. G., Liu, S. C., Qiao, X. F., Kong, Y., Liu, J. G., Peng, X. M., Wang, Y. X., & Abdulkarim Mohammed Al-Mohana, R. A. (2019b). LncRNA MEG3 promotes proliferation and differentiation of osteoblasts through Wnt/β-catenin signaling pathway. European Review for Medical and Pharmacological Sciences, 23(11), 4521–4529. https://doi.org/10.26355/eurrev_201906_18027
  • Li, Y., Shan, G., Teng, Z. Q., & Wingo, T. S. (2020). Editorial: Non-coding RNAs and human diseases. Frontiers in Genetics, 11, 523. https://doi.org/10.3389/fgene.2020.00523
  • Liang, W. C., Fu, W. M., Wang, Y. B., Sun, Y. X., Xu, L. L., Wong, C. W., Chan, K. M., Li, G., Waye, M. M., & Zhang, J. F. (2016). H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Scientific Reports, 6, 20121. https://doi.org/10.1038/srep20121
  • Lin, X., Patil, S., Gao, Y. G., & Qian, A. (2020). The bone extracellular matrix in bone formation and regeneration. Frontiers in Pharmacology, 11, 757. https://doi.org/10.3389/fphar.2020.00757
  • Liu, Q., Li, M., Wang, S., Xiao, Z., Xiong, Y., & Wang, G. (2020). Recent advances of Osterix transcription factor in osteoblast differentiation and bone formation. Frontiers in Cell and Developmental Biology, 8, 601224. https://doi.org/10.3389/fcell.2020.601224
  • Liu, S. C., Sun, Q. Z., Qiao, X. F., Li, X. G., Yang, J. H., Wang, T. Q., Xiao, Y. J., & Qiao, J. M. (2019). LncRNA TUG1 influences osteoblast proliferation and differentiation through the Wnt/β-catenin signaling pathway. European Review for Medical and Pharmacological Sciences, 23(11), 4584–4590. https://doi.org/10.26355/eurrev_201906_18035
  • Liu, T. M., & Lee, E. H. (2013). Transcriptional regulatory cascades in Runx2-dependent bone development. Tissue Engineering, Part B, Reviews, 19(3), 254–263. https://doi.org/10.1089/ten.TEB.2012.0527
  • Long, F., Chung, U.-i., Ohba, S., McMahon, J., Kronenberg, H. M., & McMahon, A. P. (2004). Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development (Cambridge, England), 131(6), 1309–1318. https://doi.org/10.1242/dev.01006
  • Lv, H., Yang, H., & Wang, Y. (2020). Effects of miR-103 by negatively regulating SATB2 on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells. PLoS One, 15(5), e0232695. https://doi.org/10.1371/journal.pone.0232695
  • Manolagas, S. C. (2000). Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocrine Reviews, 21(2), 115–137. 10.1210/edrv.21.2.0395 10782361
  • Marshall, M. J., Evans, S. F., Sharp, C. A., Powell, D. E., McCarthy, H. S., & Davie, M. W. (2009). Increased circulating Dickkopf-1 in Paget’s disease of bone. Clinical Biochemistry, 42(10–11), 965–969. https://doi.org/10.1016/j.clinbiochem.2009.04.007
  • Martin, A., Liu, S., David, V., Li, H., Karydis, A., Feng, J. Q., & Quarles, L. D. (2011). Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. The FASEB Journal, 25(8), 2551–2562. https://doi.org/10.1096/fj.10-177816
  • Matthews, B. G., Grcevic, D., Wang, L., Hagiwara, Y., Roguljic, H., Joshi, P., Shin, D. G., Adams, D. J., & Kalajzic, I. (2014). Analysis of αSMA-labeled progenitor cell commitment identifies notch signaling as an important pathway in fracture healing. Journal of Bone and Mineral Research, 29(5), 1283–1294. https://doi.org/10.1002/jbmr.2140
  • Matthews, B. G., Wee, N., Widjaja, V. N., Price, J. S., Kalajzic, I., & Windahl, S. H. (2020). αSMA osteoprogenitor cells contribute to the increase in osteoblast numbers in response to mechanical loading. Calcified Tissue International, 106(2), 208–217. https://doi.org/10.1007/s00223-019-00624-y
  • Mi, B., Xiong, Y., Chen, L., Yan, C., Endo, Y., Liu, Y., Liu, J., Hu, L., Hu, Y., Sun, Y., Cao, F., Zhou, W., & Liu, G. (2019). CircRNA AFF4 promotes osteoblast cells proliferation and inhibits apoptosis via the Mir-7223-5p/PIK3R1 axis. Aging, 11(24), 11988–12001. https://doi.org/10.18632/aging.102524
  • Michou, L., & Orcel, P. (2019). Has Paget’s bone disease become rare? Joint Bone Spine, 86(5), 538–541. https://doi.org/10.1016/j.jbspin.2019.01.015
  • Miraoui, H., Severe, N., Vaudin, P., Pagès, J. C., & Marie, P. J. (2010). Molecular silencing of Twist1 enhances osteogenic differentiation of murine mesenchymal stem cells: Implication of FGFR2 signaling. Journal of Cellular Biochemistry, 110(5), 1147–1154. https://doi.org/10.1002/jcb.22628
  • Mouillé, M., Rio, M., Breton, S., Piketty, M. L., Afenjar, A., Amiel, J., Capri, Y., Goldenberg, A., Francannet, C., Michot, C., Mignot, C., Perrin, L., Quelin, C., Van Gils, J., Barcia, G., Pingault, V., Maruani, G., Koumakis, E., & Cormier-Daire, V. (2022). SATB2-associated syndrome: Characterization of skeletal features and of bone fragility in a prospective cohort of 19 patients. Orphanet Journal of Rare Diseases, 17(1), 100. https://doi.org/10.1186/s13023-022-02229-5
  • Nahian, A., & Davis, D. D. (2021). Histology, osteoprogenitor cells. In: StatPearls [Internet]. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK559160/
  • Nakamura, T., Aikawa, T., Iwamoto-Enomoto, M., Iwamoto, M., Higuchi, Y., Pacifici, M., Kinto, N., Yamaguchi, A., Noji, S., Kurisu, K., Matsuya, T., & Maurizio, P. (1997). Induction of osteogenic differentiation by hedgehog proteins. Biochemical and Biophysical Research Communications, 237(2), 465–469. https://doi.org/10.1006/bbrc.1997.7156
  • Nakashima, K., &De Crombrugghe, B. (2003). Transcriptional mechanisms in osteoblast differentiation and bone formation. Trends in Genetics, 19(8), 458–466. https://doi.org/10.1016/S0168-9525(03)00176-8
  • Nardocci, G.,Carrasco, M. E.,Acevedo, E.,Hodar, C.,Meneses, C., &Montecino, M. (2018). Identification of a novel long noncoding RNA that promotes osteoblast differentiation. Journal of Cellular Biochemistry, 119(9), 7657–7666. https://doi.org/10.1002/jcb.27113 29806713
  • Nebot Valenzuela, E., &Pietschmann, P. (2017). Epidemiology and pathology of Paget's disease of bone- a review. Wiener Medizinische Wochenschrift (1946), 167(1-2), 2–8. https://doi.org/10.1007/s10354-016-0496-4 27600564
  • Nemoto, E., Ebe, Y., Kanaya, S., Tsuchiya, M., Nakamura, T., Tamura, M., & Shimauchi, H. (2012). Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis. Biochemical and Biophysical Research Communications, 422(4), 627–632. https://doi.org/10.1016/j.bbrc.2012.05.039
  • Nohno, T.,Ishikawa, T.,Saito, T.,Hosokawa, K.,Noji, S.,Wolsing, D. H., &Rosenbaum, J. S. (1995). Identification of a human type II receptor for bone morphogenetic protein-4 that forms differential heteromeric complexes with bone morphogenetic protein type I receptors. The Journal of Biological Chemistry, 270(38), 22522–22526. https://doi.org/10.1074/jbc.270.38.22522 7673243
  • Ogasawara, T., Kawaguchi, H., Jinno, S., Hoshi, K., Itaka, K., Takato, T., Nakamura, K., & Okayama, H. (2004). Bone morphogenetic protein 2-induced osteoblast differentiation requires Smad-mediated down-regulation of Cdk6. Molecular and Cellular Biology, 24(15), 6560–6568. https://doi.org/10.1128/MCB.24.15.6560-6568.2004
  • Okamoto, M., Udagawa, N., Uehara, S., Maeda, K., Yamashita, T., Nakamichi, Y., Kato, H., Saito, N., Minami, Y., Takahashi, N., & Kobayashi, Y. (2014). Noncanonical Wnt5a enhances Wnt/β-catenin signaling during osteoblastogenesis. Scientific Reports, 4, 4493. https://doi.org/10.1038/srep04493
  • Omoteyama, K., & Takagi, M. (2010). The effects of Sp7/Osterix gene silencing in the chondroprogenitor cell line, ATDC5. Biochemical and Biophysical Research Communications, 403(2), 242–246. https://doi.org/10.1016/j.bbrc.2010.11.023
  • Ouyang, Z., Tan, T., Zhang, X., Wan, J., Zhou, Y., Jiang, G., Yang, D., Guo, X., & Liu, T. (2019). CircRNA hsa_circ_0074834 promotes the osteogenesis-angiogenesis coupling process in bone mesenchymal stem cells (BMSCs) by acting as a ceRNA for miR-942-5p. Cell Death & Disease, 10(12), 932. https://doi.org/10.1038/s41419-019-2161-5
  • Pan, T., Song, W., Xin, H., Yu, H., Wang, H., Ma, D., Cao, X., & Wang, Y. (2021). MicroRNA-activated hydrogel scaffold generated by 3D printing accelerates bone regeneration. Bioactive Materials, 10, 1–14. https://doi.org/10.1016/j.bioactmat.2021.08.034
  • Patil, S., Dang, K., Zhao, X., Gao, Y., & Qian, A. (2020). Role of LncRNAs and CircRNAs in bone metabolism and osteoporosis. Frontiers in Genetics, 11, 584118. https://doi.org/10.3389/fgene.2020.584118
  • Pino, A. M., Rosen, C. J., & Rodríguez, J. P. (2012). In Osteoporosis, differentiation of mesenchymal stem cells (MSCs) improves bone marrow adipogenesis. Biological Research, 45(3), 279–287. https://doi.org/10.4067/s0716-97602012000300009
  • Ponzetti, M., & Rucci, N. (2021). Osteoblast differentiation and signaling: Established concepts and emerging topics. International Journal of Molecular Sciences, 22(13), 6651. https://doi.org/10.3390/ijms22136651
  • Qiu, Z.-Y., Cui, Y., & Wang, X.-M. (2019). Natural bone tissue and its biomimetic. In X.-M. Wang, Z.-Y. Qiu, & H. Cui (Ed.), Mineralized collagen bone graft substitutes (pp. 1–22). Woodhead Publishing Limited. https://doi.org/10.1016/b978-0-08-102717-2.00001-1
  • Quarto, N., Senarath-Yapa, K., Renda, A., & Longaker, M. T. (2015). TWIST1 silencing enhances in vitro and in vivo osteogenic differentiation of human adipose-derived stem cells by triggering activation of BMP-ERK/FGF signaling and TAZ upregulation. Stem Cells (Dayton, Ohio), 33(3), 833–847. https://doi.org/10.1002/stem.1907
  • Rosenzweig, B. L.,Imamura, T.,Okadome, T.,Cox, G. N.,Yamashita, H.,Ten Dijke, P.,Heldin, C. H., &Miyazono, K. (1995). Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proceedings of the National Academy of Sciences of the United States of America, 92(17), 7632–7636. 10.1073/pnas.92.17.7632 7644468
  • Rutkovskiy, A., Stensløkken, K. O., & Vaage, I. J. (2016). Osteoblast differentiation at a glance. Medical Science Monitor Basic Research, 22, 95–106. https://doi.org/10.12659/msmbr.901142
  • Samee, N., Geoffroy, V., Marty, C., Schiltz, C., Vieux-Rochas, M., Levi, G., & de Vernejoul, M. C. (2008). Dlx5, a positive regulator of osteoblastogenesis, is essential for osteoblast-osteoclast coupling. The American Journal of Pathology, 173(3), 773–780. https://doi.org/10.2353/ajpath.2008.080243
  • Santonocito, S., Polizzi, A., Palazzo, G., & Isola, G. (2021). The emerging role of microRNA in periodontitis: Pathophysiology, clinical potential and future molecular perspectives. International Journal of Molecular Sciences, 22(11), 5456. https://doi.org/10.3390/ijms22115456
  • Sayad, A., Mirzajani, S., Gholami, L., Razzaghi, P., Ghafouri-Fard, S., & Taheri, M. (2020). Emerging role of long non-coding RNAs in the pathogenesis of periodontitis. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 129, 110362. https://doi.org/10.1016/j.biopha.2020.110362
  • Schliephake, H., Knebel, J. W., Aufderheide, M., & Tauscher, M. (2001). Use of cultivated osteoprogenitor cells to increase bone formation in segmental mandibular defects: An experimental pilot study in sheep. International Journal of Oral and Maxillofacial Surgery, 30(6), 531–537. https://doi.org/10.1054/ijom.2001.0164
  • Shahi, M., Peymani, A., & Sahmani, M. (2017). Regulation of bone metabolism. Reports of Biochemistry & Molecular Biology, 5(2), 73–82.
  • Shen, J. J., Zhang, C. H., Chen, Z. W., Wang, Z. X., Yang, D. C., Zhang, F. L., & Feng, K. H. (2019). LncRNA HOTAIR inhibited osteogenic differentiation of BMSCs by regulating Wnt/β-catenin pathway. European Review for Medical and Pharmacological Sciences, 23(17), 7232–7246. https://doi.org/10.26355/eurrev_201909_18826
  • Shim, J. H., Greenblatt, M. B., Zou, W., Huang, Z., Wein, M. N., Brady, N., Hu, D., Charron, J., Brodkin, H. R., Petsko, G. A., Zaller, D., Zhai, B., Gygi, S., Glimcher, L. H., & Jones, D. C. (2013). Schnurri-3 regulates ERK downstream of WNT signaling in osteoblasts. The Journal of Clinical Investigation, 123(9), 4010–4022. https://doi.org/10.1172/JCI69443
  • Shimoyama, A., Wada, M., Ikeda, F., Hata, K., Matsubara, T., Nifuji, A., Noda, M., Amano, K., Yamaguchi, A., Nishimura, R., & Yoneda, T. (2007). Ihh/Gli2 signaling promotes osteoblast differentiation by regulating Runx2 expression and function. Molecular Biology of the Cell, 18(7), 2411–2418. https://doi.org/10.1091/mbc.e06-08-0743
  • Silva, A. M., Moura, S. R., Teixeira, J. H., Barbosa, M. A., Santos, S. G., & Almeida, M. I. (2019). Long noncoding RNAs: A missing link in osteoporosis. Bone Research, 7, 10. 10. https://doi.org/10.1038/s41413-019-0048-9
  • St-Jacques, B.,Hammerschmidt, M., &McMahon, A. P. (1999). Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes & Development, 13(16), 2072–2086. 10.1101/gad.13.16.2072 10465785
  • Stein, G. S., & Lian, J. B. (1993). Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocrine Reviews, 14(4), 424–442. https://doi.org/10.1210/edrv-14-4-424
  • Syed, F. A., Oursler, M. J., Hefferanm, T. E., Peterson, J. M., Riggs, B. L., & Khosla, S. (2008). Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women. Osteoporosis International, 19(9), 1323–1330. https://doi.org/10.1007/s00198-008-0574-6
  • Tang, W., Li, Y., Osimiri, L., & Zhang, C. (2011). Osteoblast-specific transcription factor Osterix (Osx) is an upstream regulator of Satb2 during bone formation. The Journal of Biological Chemistry, 286(38), 32995–33002. https://doi.org/10.1074/jbc.M111.244236
  • Thomson, D. W., & Dinger, M. E. (2016). Endogenous microRNA sponges: Evidence and controversy. Nature Reviews. Genetics, 17(5), 272–283. https://doi.org/10.1038/nrg.2016.20
  • Tominaga, H., Maeda, S., Hayashi, M., Takeda, S., Akira, S., Komiya, S., Nakamura, T., Akiyama, H., & Imamura, T. (2008). CCAAT/enhancer-binding protein beta promotes osteoblast differentiation by enhancing Runx2 activity with ATF4. Molecular Biology of the Cell, 19(12), 5373–5386. https://doi.org/10.1091/mbc.e08-03-0329
  • Ueyama, H., Ohta, Y., Imai, Y., Suzuki, A., Sugama, R., Minoda, Y., Takaoka, K., & Nakamura, H. (2021). Topical co-administration of zoledronate with recombinant human bone morphogenetic protein-2 can induce and maintain bone formation in the bone marrow environment. BMC Musculoskeletal Disorders, 22(1), 94. https://doi.org/10.1186/s12891-021-03971-w
  • Ullah, I., Subbarao, R. B., & Rho, G. J. (2015). Human mesenchymal stem cells - current trends and future prospective. Bioscience Reports, 35(2), e00191. https://doi.org/10.1042/BSR20150025
  • Vimalraj, S., Arumugam, B., Miranda, P. J., & Selvamurugan, N. (2015). Runx2: Structure, function, and phosphorylation in osteoblast differentiation. International Journal of Biological Macromolecules, 78, 202–208. https://doi.org/10.1016/j.ijbiomac.2015.04.008
  • Wada, Y., Kataoka, H., Yokose, S., Ishizuya, T., Miyazono, K., Gao, Y. H., Shibasaki, Y., & Yamaguchi, A. (1998). Changes in osteoblast phenotype during differentiation of enzymatically isolated rat calvaria cells. Bone, 22(5), 479–485. https://doi.org/10.1016/S8756-3282(98)00039-8
  • Wang, C. G., Hu, Y. H., Su, S. L., & Zhong, D. (2020). LncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/β-catenin signaling pathway. Experimental & Molecular Medicine, 52(8), 1310–1325. https://doi.org/10.1038/s12276-020-0475-0
  • Wang, W., Lian, N., Li, L., Moss, H. E., Wang, W., Perrien, D. S., Elefteriou, F., & Yang, X. (2009). Atf4 regulates chondrocyte proliferation and differentiation during endochondral ossification by activating Ihh transcription. Development (Cambridge, England), 136(24), 4143–4153. https://doi.org/10.1242/dev.043281
  • Wang, W., Lian, N., Ma, Y., Li, L., Gallant, R. C., Elefteriou, F., & Yang, X. (2012). Chondrocytic Atf4 regulates osteoblast differentiation and function via Ihh. Development (Cambridge, England), 139(3), 601–611. https://doi.org/10.1242/dev.069575
  • Wang, X., Guo, B., Li, Q., Peng, J., Yang, Z., Wang, A., Li, D., Hou, Z., Lv, K., Kan, G., Cao, H., Wu, H., Song, J., Pan, X., Sun, Q., Ling, S., Li, Y., Zhu, M., Zhang, P., … Li, Y. (2013). miR-214 targets ATF4 to inhibit bone formation. Nature Medicine, 19(1), 93–100. https://doi.org/10.1038/nm.3026
  • Wei, J., Shi, Y., Zheng, L., Zhou, B., Inose, H., Wang, J., Guo, X. E., Grosschedl, R., & Karsenty, G. (2012). miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. The Journal of Cell Biology, 197(4), 509–521. https://doi.org/10.1083/jcb.201201057
  • Wen, J., Guan, Z., Yu, B., Guo, J., Shi, Y., & Hu, L. (2020). Circular RNA hsa_circ_0076906 competes with OGN for miR-1305 biding site to alleviate the progression of osteoporosis. The International Journal of Biochemistry & Cell Biology, 122, 105719. https://doi.org/10.1016/j.biocel.2020.105719
  • Werner de Castro, G. R., Buss, Z., Rosa, J. S., Facchin, B. M., & Fröde, T. S. (2019). Evaluation of bone metabolism biomarkers in Paget’s disease of bone. Cureus, 11(5), e4791. https://doi.org/10.7759/cureus.4791
  • Xia, T., Dong, S., & Tian, J. (2020). miR-29b promotes the osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue via the PTEN/AKT/β-catenin signaling pathway. International Journal of Molecular Medicine, 46(2), 709–717. https://doi.org/10.3892/ijmm.2020.4615
  • Xiao, G., Jiang, D., Ge, C., Zhao, Z., Lai, Y., Boules, H., Phimphilai, M., Yang, X., Karsenty, G., & Franceschi, R. T. (2005). Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression. The Journal of Biological Chemistry, 280(35), 30689–30696. https://doi.org/10.1074/jbc.M500750200
  • Xiao, X., Zhou, T., Guo, S., Guo, C., Zhang, Q., Dong, N., & Wang, Y. (2017). LncRNA MALAT1 sponges miR-204 to promote osteoblast differentiation of human aortic valve interstitial cells through up-regulating Smad4. International Journal of Cardiology, 243, 404–412. https://doi.org/10.1016/j.ijcard.2017.05.037
  • Xiaoling, G., Shuaibin, L., & Kailu, L. (2020). MicroRNA-19b-3p promotes cell proliferation and osteogenic differentiation of BMSCs by interacting with lncRNA H19. BMC Medical Genetics, 21(1), 11. https://doi.org/10.1186/s12881-020-0948-y
  • Xie, Q., Wang, Z., Bi, X., Zhou, H., Wang, Y., Gu, P., & Fan, X. (2014). Effects of miR-31 on the osteogenesis of human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 446(1), 98–104. https://doi.org/10.1016/j.bbrc.2014.02.058
  • Yamaguchi, M.,Goto, M.,Uchiyama, S., &Nakagawa, T. (2008). Effect of zinc on gene expression in osteoblastic MC3T3-E1 cells: enhancement of Runx2, OPG, and regucalcin mRNA expressions. Molecular and Cellular Biochemistry, 312(1-2), 157–166. 10.1007/s11010-008-9731-7 18327666
  • Yang, J., Andre, P., Ye, L., & Yang, Y. Z. (2015). The Hedgehog signalling pathway in bone formation. International Journal of Oral Science, 7(2), 73–79. https://doi.org/10.1038/ijos.2015.14
  • Yang, J., Xu, Y., Xue, X., Zhang, M., Wang, S., & Qi, K. (2022). MicroRNA-26b regulates BMSC osteogenic differentiation of TMJ subchondral bone through β-catenin in osteoarthritis. Bone, 162, 116448. https://doi.org/10.1016/j.bone.2022.116448
  • Yang, X., & Karsenty, G. (2004). ATF4, the osteoblast accumulation of which is determined post-translationally, can induce osteoblast-specific gene expression in non-osteoblastic cells. The Journal of Biological Chemistry, 279(45), 47109–47114. https://doi.org/10.1074/jbc.m410010200
  • Yang, X., Matsuda, K., Bialek, P., Jacquot, S., Masuoka, H. C., Schinke, T., Li, L., Brancorsini, S., Sassone-Corsi, P., Townes, T. M., Hanauer, A., & Karsenty, G. (2004). ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell, 117(3), 387–398. https://doi.org/10.1016/S0092-8674(04)00344-7
  • Yavropoulou, M. P., van Lierop, A. H., Hamdy, N. A., Rizzoli, R., & Papapoulos, S. E. (2012). Serum sclerostin levels in Paget’s disease and prostate cancer with bone metastases with a wide range of bone turnover. Bone, 51(1), 153–157. https://doi.org/10.1016/j.bone.2012.04.016
  • Yi, J., Liu, D., & Xiao, J. (2019). LncRNA MALAT1 sponges miR-30 to promote osteoblast differentiation of adipose-derived mesenchymal stem cells by promotion of Runx2 expression. Cell and Tissue Research, 376(1), 113–121. https://doi.org/10.1007/s00441-018-2963-2
  • Yin, C., Tian, Y., Yu, Y., Li, D., Miao, Z., Su, P., Zhao, Y., Wang, X., Pei, J., Zhang, K., & Qian, A. (2021). Long noncoding RNA AK039312 and AK079370 inhibits bone formation via miR-199b-5p. Pharmacological Research, 163, 105230. https://doi.org/10.1016/j.phrs.2020.105230
  • Yu, C., Wu, D., Zhao, C., & Wu, C. (2021). CircRNA TGFBR2/MiR-25-3p/TWIST1 axis regulates osteoblast differentiation of human aortic valve interstitial cells. Journal of Bone and Mineral Metabolism, 39(3), 360–371. https://doi.org/10.1007/s00774-020-01164-4
  • Yu, L., Xia, K., Zhou, J., Hu, Z., Yin, X., Zhou, C., Zou, S., & Liu, J. (2022). circ_0003204 regulates the osteogenic differentiation of human adipose-derived stem cells via miR-370-3p/HDAC4 axis. International Journal of Oral Science, 14(1), 30. https://doi.org/10.1038/s41368-022-00184-2
  • Yu, M., Wang, L., Ba, P., Li, L., Sun, L., Duan, X., Yang, P., Yang, C., & Sun, Q. (2017). Osteoblast progenitors enhance osteogenic differentiation of periodontal ligament stem cells. Journal of Periodontology, 88(10), e159–e168. https://doi.org/10.1902/jop.2017.170016
  • Yu, S., Jiang, Y., Galson, D. L., Luo, M., Lai, Y., Lu, Y., Ouyang, H. J., Zhang, J., & Xiao, G. (2008). General transcription factor IIA-gamma increases osteoblast-specific osteocalcin gene expression via activating transcription factor 4 and runt-related transcription factor 2. The Journal of Biological Chemistry, 283(9), 5542–5553. https://doi.org/10.1074/jbc.M705653200
  • Zarka, M., Haÿ, E., & Cohen-Solal, M. (2022). YAP/TAZ in bone and cartilage biology. Frontiers in Cell and Developmental Biology, 9, 788773. https://doi.org/10.3389/fcell.2021.788773
  • Zhang, C. (2010). Transcriptional regulation of bone formation by the osteoblast-specific transcription factor Osx. Journal of Orthopaedic Surgery and Research, 5(1), 37. https://doi.org/10.1186/1749-799x-5-37
  • Zhang, C., Cho, K., Huang, Y., Lyons, J. P., Zhou, X., Sinha, K., McCrea, P. D., & de Crombrugghe, B. (2008a). Inhibition of Wnt signaling by the osteoblast-specific transcription factor Osterix. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6936–6941. https://doi.org/10.1073/pnas.0710831105
  • Zhang, D., Ni, N., Wang, Y., Tang, Z., Gao, H., Ju, Y., Sun, N., He, X., Gu, P., & Fan, X. (2021). CircRNA-vgll3 promotes osteogenic differentiation of adipose-derived mesenchymal stem cells via modulating miRNA-dependent integrin α5 expression. Cell Death and Differentiation, 28(1), 283–302. https://doi.org/10.1038/s41418-020-0600-6
  • Zhang, J., Chen, H., Leung, R., Choy, K. W., Lam, T. P., Ng, B., Qiu, Y., Feng, J. Q., Cheng, J., & Lee, W. (2018). Aberrant miR-145-5p/β-catenin signal impairs osteocyte function in adolescent idiopathic scoliosis. FASEB Journal, 32(12), 6537–6549. https://doi.org/10.1096/fj.201800281
  • Zhang, R. F., Liu, J. W., Yu, S. P., Sun, D., Wang, X. H., Fu, J. S., & Xie, Z. (2019). LncRNA UCA1 affects osteoblast proliferation and differentiation by regulating BMP-2 expression. European Review for Medical and Pharmacological Sciences, 23(16), 6774–6782. https://doi.org/10.26355/eurrev_201908_18715
  • Zhang, X. W., Zhang, B. Y., Wang, S. W., Gong, D. J., Han, L., Xu, Z. Y., & Liu, X. H. (2014). Twist-related protein 1 negatively regulated osteoblastic transdifferentiation of human aortic valve interstitial cells by directly inhibiting runt-related transcription factor 2. The Journal of Thoracic and Cardiovascular Surgery, 148(4), 1700–1708.e1. https://doi.org/10.1016/j.jtcvs.2014.02.084
  • Zhang, X., Yu, S., Galson, D. L., Luo, M., Fan, J., Zhang, J., Guan, Y., & Xiao, G. (2008b). Activating transcription factor 4 is critical for proliferation and survival in primary bone marrow stromal cells and calvarial osteoblasts. Journal of Cellular Biochemistry, 105(3), 885–895. https://doi.org/10.1002/jcb.21888
  • Zhang, Y., Jia, S., Wei, Q., Zhuang, Z., Li, J., Fan, Y., Zhang, L., Hong, Z., Ma, X., Sun, R., He, W., Wang, H., Liu, Y., & Li, W. (2020). CircRNA_25487 inhibits bone repair in trauma-induced osteonecrosis of femoral head by sponging miR-134-3p through p21. Regenerative Therapy, 16, 23–31. https://doi.org/10.1016/j.reth.2020.12.003
  • Zhou, R., Miao, S., Xu, J., Sun, L., & Chen, Y. (2021). Circular RNA circ_0000020 promotes osteogenic differentiation to reduce osteoporosis via sponging microRNA miR-142-5p to up-regulate Bone Morphogenetic Protein BMP2. Bioengineered, 12(1), 3824–3836. https://doi.org/10.1080/21655979.2021.1949514
  • Zhou, X., Zhang, Z., Feng, J. Q., Dusevich, V. M., Sinha, K., Zhang, H., Darnay, B. G., & de Crombrugghe, B. (2010). Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proceedings of the National Academy of Sciences of the United States of America, 107(29), 12919–12924. https://doi.org/10.1073/pnas.0912855107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.