134
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Elucidating the function of hypothetical PE_PGRS45 protein of Mycobacterium tuberculosis as an oxido-reductase: a potential target for drug repurposing for the treatment of tuberculosis

, ORCID Icon, & ORCID Icon
Pages 10009-10025 | Received 06 Apr 2022, Accepted 19 Nov 2022, Published online: 30 Nov 2022

References

  • Alvarez, H. M. (2016). Triacylglycerol and wax ester-accumulating machinery in prokaryotes. Biochimie, 120, 28–39. https://doi.org/10.1016/j.biochi.2015.08.016
  • Andersson, C. S., Lundgren, C. A. K., Magnúsdóttir, A., Ge, C., Wieslander, Å., Molina, D. M., & Högbom, M. (2012). The Mycobacterium tuberculosis very-long-chain fatty acyl-CoA synthetase: Structural basis for housing lipid substrates longer than the enzyme. Structure (London, England : 1993), 20(6), 1062–1070. https://doi.org/10.1016/j.str.2012.03.012
  • Ates, L. S. (2020). New insights into the mycobacterial PE and PPE proteins provide a framework for future research. Molecular Microbiology, 113(1), 4–21. https://doi.org/10.1111/mmi.14409
  • Bansal, K., Elluru, S. R., Narayana, Y., Chaturvedi, R., Patil, S. A., Kaveri, S. V., Bayry, J., & Balaji, K. N. (2010). PE_PGRS antigens of Mycobacterium tuberculosis induce maturation and activation of human dendritic cells. Journal of Immunology (Baltimore, Md.: 1950), 184(7), 3495–3504. https://doi.org/10.4049/jimmunol.0903299
  • Banu, S., Honoré, N., Saint-Joanis, B., Philpott, D., Prévost, M.-C., & Cole, S. T. (2002). Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? Molecular Microbiology, 44(1), 9–19. https://doi.org/10.1046/j.1365-2958.2002.02813.x
  • Bowie, J. U., Lüthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science (New York, N.Y.), 253(5016), 164–170. https://doi.org/10.1126/science.1853201
  • Brennan, M. J. (2017). The enigmatic PE/PPE multigene family of mycobacteria and tuberculosis vaccination. Infection and Immunity, 85(6), e00969-16. https://doi.org/10.1128/IAI.00969-16
  • Brennan, M. J., & Delogu, G. (2002). The PE multigene family: A ‘molecular mantra’ for mycobacteria. Trends in Microbiology. 10(5), 246–249. https://doi.org/10.1016/S0966-842X(02)02335-1
  • Brennan, M. J., Delogu, G., Chen, Y., Bardarov, S., Kriakov, J., Alavi, M., & Jacobs, W. R. (2001). Evidence that mycobacterial PE_PGRS proteins are cell surface constituents that influence interactions with other cells. Infection and Immunity, 69(12), 7326–7333. https://doi.org/10.1128/IAI.69.12.7326-7333.2001
  • Burlingham, B. T., & Widlanski, T. S. (2003). An intuitive look at the relationship of Ki and IC50: A more general use for the Dixon plot. Journal of Chemical Education, 80(2), 214. https://doi.org/10.1021/ed080p214
  • Cadieux, N., Parra, M., Cohen, H., Maric, D., Morris, S. L., & Brennan, M. J. (2011). Induction of cell death after localization to the host cell mitochondria by the Mycobacterium tuberculosis PE-PGRS33 protein. Microbiology (Reading, England), 157(Pt 3), 793–804. https://doi.org/10.1099/mic.0.041996-0
  • Chatrath, S., Gupta, V. K., & Garg, L. C. (2014). The PGRS domain is responsible for translocation of PE_PGRS30 to cell poles while the PE and the C-terminal domains localize it to the cell wall. FEBS Letters, 588(6), 990–994. https://doi.org/10.1016/j.febslet.2014.01.059
  • Chaturvedi, R., Bansal, K., Narayana, Y., Kapoor, N., Sukumar, N., Togarsimalemath, S. K., Chandra, N., Mishra, S., Ajitkumar, P., Joshi, B., Katoch, V. M., Patil, S. A., & Balaji, K. N. (2010). The multifunctional PE-PGRS11 protein from Mycobacterium tuberculosis plays a role in regulating resistance to oxidative stress. The Journal of Biological Chemistry, 285(40), 30389–30403. https://doi.org/10.1074/jbc.M110.135251
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Daleke, M. H., Cascioferro, A., De Punder, K., Ummels, R., Abdallah, A. M., Van Der Wel, N., Peters, P. J., Luirink, J., Manganelli, R., & Bitter, W. (2011). Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway. The Journal of Biological Chemistry, 286(21), 19024–19034. https://doi.org/10.1074/jbc.M110.204966
  • Delogu, G., Pusceddu, C., Bua, A., Fadda, G., Brennan, M. J., & Zanetti, S. (2004). Rv1818c-encoded PE_PGRS protein of Mycobacterium tuberculosis is surface exposed and influences bacterial cell structure. Molecular Microbiology, 52(3), 725–733. https://doi.org/10.1111/j.1365-2958.2004.04007.x
  • Desler, C., Suravajhala, P., Sanderhoff, M., Rasmussen, M., & Rasmussen, L. J. (2009). In silico screening for functional candidates amongst hypothetical proteins. BMC Bioinformatics, 10, 289. https://doi.org/10.1186/1471-2105-10-289
  • Dheenadhayalan, V., Delogu, G., Sanguinetti, M., Fadda, G., & Brennan, M. J. (2006). Variable expression patterns of Mycobacterium tuberculosis PE_PGRS genes: Evidence that PE_PGRS16 and PE_PGRS26 are inversely regulated in vivo. Journal of Bacteriology, 188(10), 3721–3725. https://doi.org/10.1128/JB.188.10.3721-3725.2006
  • Ducasse-Cabanot, S., Cohen-Gonsaud, M., Marrakchi, H., Nguyen, M., Zerbib, D., Bernadou, J., Daffé, M., Labesse, G., & Quémard, A. (2004). In vitro inhibition of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein reductase MabA by isoniazid. Antimicrobial Agents and Chemotherapy, 48(1), 242–249. https://doi.org/10.1128/AAC.48.1.242-249.2004
  • Duhovny, D., Nussinov, R., & Wolfson, H. J. (2002). Efficient unbound docking of rigid molecules. Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2452, 185–200. https://doi.org/10.1007/3-540-45784-4_14
  • Dutta, N. K., & Karakousis, P. C. (2014). Thioridazine for treatment of tuberculosis: Promises and pitfalls. Tuberculosis (Edinburgh, Scotland), 94(6), 708–711. https://doi.org/10.1016/j.tube.2014.09.001
  • Fishbein, S., van Wyk, N., Warren, R. M., & Sampson, S. L. (2015). Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity. Molecular Microbiology, 96(5), 901–916. https://doi.org/10.1111/mmi.12981
  • Gey Van Pittius, N. C., Sampson, S. L., Lee, H., Kim, Y., Van Helden, P. D., & Warren, R. M. (2006). Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evolutionary Biology, 6, 95. https://doi.org/10.1186/1471-2148-6-95
  • Gibbons, H. S., Wolschendorf, F., Abshire, M., Niederweis, M., & Braunstein, M. (2007). Identification of two Mycobacterium smegmatis lipoproteins exported by a SecA2-dependent pathway. Journal of Bacteriology, 189(14), 5090–5100. https://doi.org/10.1128/JB.00163-07
  • Gold, B., Pingle, M., Brickner, S. J., Shah, N., Roberts, J., Rundell, M., Bracken, W. C., Warrier, T., Somersan, S., Venugopal, A., Darby, C., Jiang, X., Warren, J. D., Fernandez, J., Ouerfelli, O., Nuermberger, E. L., Cunningham-Bussel, A., Rath, P., Chidawanyika, T., … Nathan, C. F. (2012). Nonsteroidal anti-inflammatory drug sensitizes Mycobacterium tuberculosis to endogenous and exogenous antimicrobials. Proceedings of the National Academy of Sciences of the United States of America, 109(40), 16004–16011. https://doi.org/10.1073/pnas.1214188109
  • Grover, S., Sharma, T., Singh, Y., Kohli, S., P, M., Singh, A., Semmler, T., Wieler, L. H., Tedin, K., Ehtesham, N. Z., & Hasnain, S. E. (2018). The PGRS domain of Mycobacterium tuberculosis PE_PGRS protein Rv0297 is involved in Endoplasmic reticulum stress-mediated apoptosis through toll-like receptor 4. MBio, 9(3) https://doi.org/10.1128/mBio.01017-18
  • Gupta, S., Tyagi, S., & Bishai, W. R. (2015). Verapamil increases the bactericidal activity of bedaquiline against Mycobacterium tuberculosis in a mouse model. Antimicrobial Agents and Chemotherapy, 59(1), 673–676. https://doi.org/10.1128/AAC.04019-14
  • He, X., Alian, A., & Ortiz de Montellano, P. R. (2007). Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides. Bioorganic & Medicinal Chemistry, 15(21), 6649–6658. https://doi.org/10.1016/j.bmc.2007.08.013
  • Hill-Cawthorne, G., Nair, M., Clark, T. G., & Zaver, A. (2014). Aga Khan University, Karachi Pakistan Sydney Emerging Infections and Biosecurity Institute and School of Public Health, Sydney Zahra Hasan, PhD.
  • Issekutz, A. C. (1983). Removal of gram-negative endotoxin from solutions by affinity chromatography. Journal of Immunological Methods, 61(3), 275–281. https://doi.org/10.1016/0022-1759(83)90221-1
  • Keating, G. M., & Lyseng-Williamson, K. A. (2005). Tolcapone: A review of its use in the management of Parkinson’s disease. Tolcapone. CNS Drugs, 19(2), 165–184. https://doi.org/10.2165/00023210-200519020-00006
  • Kinnings, S. L., Liu, N., Buchmeier, N., Tonge, P. J., Xie, L., & Bourne, P. E. (2009). Drug discovery using chemical systems biology: Repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLoS Computational Biology, 5(7), e1000423. https://doi.org/10.1371/journal.pcbi.1000423
  • Kremer, L., Dover, L. G., Morbidoni, H. R., Vilchèze, C., Maughan, W. N., Baulard, A., Tu, S.-C., Honoré, N., Deretic, V., Sacchettini, J. C., Locht, C., Jacobs, W. R., & Besra, G. S. (2003). Inhibition of InhA activity, but not KasA activity, induces formation of a KasA-containing complex in mycobacteria. The Journal of Biological Chemistry, 278(23), 20547–20554. https://doi.org/10.1074/jbc.m302435200
  • Kruh, N. A., Troudt, J., Izzo, A., Prenni, J., & Dobos, K. M. (2010). Portrait of a Pathogen: The Mycobacterium tuberculosis proteome in vivo. PLoS One, 5(11), e13938. https://doi.org/10.1371/journal.pone.0013938
  • Kumar, K., Prakash, A., Tasleem, M., Islam, A., Ahmad, F., & Hassan, M. I. (2014). Functional annotation of putative hypothetical proteins from Candida dubliniensis. Gene, 543(1), 93–100. https://doi.org/10.1016/j.gene.2014.03.060
  • Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477–486. https://doi.org/10.1007/BF00228148
  • Lim, L. E., Vilchèze, C., Ng, C., Jacobs, W. R., Jr, Ramón-García, S., & Thompson, C. J. (2013). Anthelmintic avermectins kill Mycobacterium tuberculosis, including multidrug-resistant clinical strains. Antimicrobial Agents and Chemotherapy, 57(2), 1040–1046. https://doi.org/10.1128/AAC.01696-12
  • Long, Q., Xiang, X., Yin, Q., Li, S., Yang, W., Sun, H., Liu, Q., Xie, J., & Deng, W. (2019). PE_PGRS62 promotes the survival of Mycobacterium smegmatis within macrophages via disrupting ER stress-mediated apoptosis. Journal of Cellular Physiology, 234(11), 19774–19784. https://doi.org/10.1002/jcp.28577
  • Meena, L. S. (2015). An overview to understand the role of PE_PGRS family proteins in Mycobacterium tuberculosis H37Rv and their potential as new drug targets. Biotechnology and Applied Biochemistry, 62(2), 145–153. https://doi.org/10.1002/bab.1266
  • Mishra, K. C., De Chastellier, C., Narayana, Y., Bifani, P., Brown, A. K., Besra, G. S., Katoch, V. M., Joshi, B., Balaji, K. N., & Kremer, L. (2008). Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY. Infection and Immunity, 76(1), 127–140. https://doi.org/10.1128/IAI.00410-07
  • Ordway, D., Viveiros, M., Leandro, C., Bettencourt, R., Almeida, J., Martins, M., Kristiansen, J. E., Molnar, J., & Amaral, L. (2003). Clinical concentrations of thioridazine kill intracellular multidrug-resistant Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 47(3), 917–922. https://doi.org/10.1128/AAC.47.3.917-922.2003
  • Passi, A., Rajput, N. K., Wild, D. J., & Bhardwaj, A. (2018). RepTB : A gene ontology based drug repurposing approach for tuberculosis. Journal of Cheminformatics, 10(1), 12. https://doi.org/10.1186/s13321-018-0276-9
  • Petsch, D., & Anspach, F. B. (2000). Endotoxin removal from protein solutions. Journal of Biotechnology, 76(2–3), 97–119. https://doi.org/10.1016/S0168-1656(99)00185-6
  • Pires, D. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Ramakrishnan, L., Federspiel, N. A., & Falkow, S. (2000). Granuloma-specific expression of mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science (New York, N.Y.), 288(5470), 1436–1439. https://doi.org/10.1126/science.288.5470.1436
  • Rashid, M., Saha, S., & Raghava, G. P. S. (2007). Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs. BMC Bioinformatics, 8, 337. https://doi.org/10.1186/1471-2105-8-337
  • Rédei, G.P. (Ed.), (2008). CLUSTAL W (improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice) BT. In Encyclopedia of genetics, genomics, proteomics and informatics (pp. 376–377). Springer. https://doi.org/10.1007/978-1-4020-6754-9_3188
  • Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(Web Server issue), W320–W324. https://doi.org/10.1093/nar/gku316
  • Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725–738. https://doi.org/10.1038/nprot.2010.5
  • Saraav, I., Pandey, K., Misra, R., Singh, S., Sharma, M., & Sharma, S. (2017). Characterization of MymA protein as a flavin-containing monooxygenase and as a target of isoniazid. Chemical Biology & Drug Design, 89(1), 152–160. https://doi.org/10.1111/cbdd.12840
  • Schrag, A. (2005). Entacapone in the treatment of Parkinson’s disease. Lancet Neurology. 4(6), 366–370. https://doi.org/10.1016/S1474-4422(05)70098-3
  • Singhal, A., Jie, L., Kumar, P., Hong, G. S., Leow, M. K.-S., Paleja, B., Tsenova, L., Kurepina, N., Chen, J., Zolezzi, F., Kreiswirth, B., Poidinger, M., Chee, C., Kaplan, G., Wang, Y. T., & De Libero, G. (2014). Metformin as adjunct antituberculosis therapy. Science Translational Medicine, 6(263), 263ra159. https://doi.org/10.1126/scitranslmed.3009885
  • Sirakova, T. D., Deb, C., Daniel, J., Singh, H. D., Maamar, H., Dubey, V. S., & Kolattukudy, P. E. (2012). Wax ester synthesis is required for Mycobacterium tuberculosis to enter in vitro dormancy. PLoS One, 7(12), e51641. https://doi.org/10.1371/journal.pone.0051641
  • Srivastava, V., Rouanet, C., Srivastava, R., Ramalingam, B., Locht, C., & Srivastava, B. S. (2007). Macrophage-specific Mycobacterium tuberculosis genes: Identification by green flourescent protein and kanamycin resistance selection. Microbiology (Reading, England), 153(Pt 3), 659–666. https://doi.org/10.1099/mic.0.2006/000547-0
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473
  • Turkarslan, S., Peterson, E. J. R., Rustad, T. R., Minch, K. J., Reiss, D. J., Morrison, R., Ma, S., Price, N. D., Sherman, D. R., & Baliga, N. S. (2015). A comprehensive map of genome-wide gene regulation in Mycobacterium tuberculosis. Scientific Data, 2, 150010. https://doi.org/10.1038/sdata.2015.10
  • Van Soolingen, D., Hernandez-Pando, R., Orozco, H., Aguilar, D., Magis-Escurra, C., Amaral, L., Van Ingen, J., & Boeree, M. J. (2010). The antipsychotic thioridazine shows promising therapeutic activity in a mouse model of multidrug-resistant tuberculosis. PLoS One,.5(9), e12640. https://doi.org/10.1371/journal.pone.0012640
  • WHO. (2021). WHO Global TB Report. World Health Organization.
  • Xu, J., Tasneen, R., Peloquin, C. A., Almeida, D. V., Li, S.-Y., Barnes-Boyle, K., Lu, Y., & Nuermberger, E. (2018). Verapamil increases the bioavailability and efficacy of bedaquiline but not clofazimine in a murine model of tuberculosis. Antimicrobial Agents and Chemotherapy. 62
  • Yang, J., & Zhang, Y. (2015). I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Research, 43(W1), W174–W181. https://doi.org/10.1093/nar/gkv342

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.