111
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synergistic effect of conformational changes in phosphoglycerate kinase 1 product release

, , , &
Pages 10059-10069 | Received 11 Aug 2022, Accepted 23 Nov 2022, Published online: 01 Dec 2022

References

  • Bernstein, B. E., Michels, P. A., & Hol, W. G. (1997). Synergistic effects of substrate-induced conformational changes in phosphoglycerate kinase activation. Nature, 385(6613), 275–278. https://doi.org/10.1038/385275a0
  • Bowler, M. W. (2013). Conformational dynamics in phosphoglycerate kinase, an open and shut case? FEBS Letters, 587(13), 1878–1883.
  • Case, D. A., Betz, R. M., Cerutti, D. S., Cheatham, T., & Kollman, P. A. (2016). Amber 16. University of California.
  • Cliff, M. J., Bowler, M. W., Varga, A., Marston, J. P., Szabó, J., Hounslow, A. M., Baxter, N. J., Blackburn, G. M., Vas, M., & Waltho, J. P. (2010). Transition state analogue structures of human phosphoglycerate kinase establish the importance of charge balance in catalysis. Journal of the American Chemical Society, 132(18), 6507–6516. https://doi.org/10.1021/ja100974t
  • Darden, T., York, D., Pedersen, L. (1993). Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. Journal of Chemical Physics. 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics. 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Heiden, M., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science (New York, N.Y.), 324(5930), 1029–1033.
  • Homeyer, N., Horn, A. H. C., Lanig, H., & Sticht, & H. (2006). AMBER force-field parameters for phosphorylated amino acids in different protonation states: Phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. Journal of Molecular Modeling, 12(3), 281–289. https://doi.org/10.1007/s00894-005-0028-4
  • Hu, H., Zhu, W., Qin, J., Chen, M., Gong, L., Li, L., Liu, X., Tao, Y., Yin, H., Zhou, H., Zhou, L., Ye, D., Ye, Q., & Gao, D. (2017). Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology (Baltimore, Md.), 65(2), 515–528. https://doi.org/10.1002/hep.28887
  • Humphrey, W. F., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jamsawang, P. (2018). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics. 79, 926–935.
  • Kim, J., & Deberardinis, R. J. (2019). Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metabolism, 30(3), 434–446. https://doi.org/10.1016/j.cmet.2019.08.013
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Koppenol, W. H., Bounds, P. L., & Dang, C. V. (2011). Otto Warburg’s contributions to current concepts of cancer metabolism. Nature Reviews Cancer, 11(5), 325–337.
  • Maisuradze, G. G., Liwo, A., & Scheraga, H. A. (2010). Relation between free energy landscapes of proteins and dynamics. Journal of Chemical Theory and Computation, 6(2), 583–595. https://doi.org/10.1021/ct9005745
  • Martínez-Reyes, I., & Chandel, N. S. (2021). Cancer metabolism: Looking forward. Nature Reviews Cancer, 21(10), 669–680. https://doi.org/10.1038/s41568-021-00378-6
  • Nie, H., Ju, H., Fan, J., Shi, X., Cheng, Y., Cang, X., Zheng, Z., Duan, X., & Yi, W. (2020). O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth. Nature Communications, 11(1), 36. https://doi.org/10.1038/s41467-019-13601-8
  • Palmai, Z., Seifert, C., Gräter, F., & Balog, E. (2014). An allosteric signaling pathway of human 3-phosphoglycerate kinase from force distribution analysis. PLoS Computational Biology, 10(1), e1003444. https://doi.org/10.1371/journal.pcbi.1003444
  • Pey, A. L., Mesa-Torres, N., Chiarelli, L. R., & Valentini, G. (2013). Structural and energetic basis of protein kinetic destabilization in human phosphoglycerate kinase 1 deficiency. Biochemistry, 52(7), 1160–1170.
  • Qian, X., Li, X., Cai, Q., Zhang, C., Yu, Q., Jiang, Y., Lee, J.-H., Hawke, D., Wang, Y., Xia, Y., Zheng, Y., Jiang, B.-H., Liu, D. X., Jiang, T., & Lu, Z. (2017). Phosphoglycerate kinase 1 phosphorylates beclin1 to induce autophagy. Molecular Cell, 65(5), 917–931.e6. https://doi.org/10.1016/j.molcel.2017.01.027
  • Qian, X., Li, X., Shi, Z., Xia, Y., Cai, Q., Xu, D., Tan, L., Du, L., Zheng, Y., Zhao, D., Zhang, C., Lorenzi, P. L., You, Y., Jiang, B.-H., Jiang, T., Li, H., & Lu, Z. (2019). PTEN suppresses glycolysis by dephosphorylating and inhibiting autophosphorylated PGK1. Molecular Cell, 76(3), 516–527.e7. e7. https://doi.org/10.1016/j.molcel.2019.08.006
  • Reinfeld, B. I., Madden, M. Z., Wolf, M. M., Chytil, A., Bader, J. E., Patterson, A. R., Sugiura, A., Cohen, A. S., Ali, A., Do, B. T., Muir, A., Lewis, C. A., Hongo, R. A., Young, K. L., Brown, R. E., Todd, V. M., Huffstater, T., Abraham, A., O'Neil, R. T., … Rathmell, W. K. (2021). Cell-programmed nutrient partitioning in the tumour microenvironment. Nature, 593(7858), 282–288.
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Sun, H., Duan, L., Chen, F., Liu, H., Wang, Z., Pan, P., Zhu, F., Zhang, J. Z. H., & Hou, T. (2018). Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches. Physical Chemistry Chemical Physics: PCCP, 20(21), 14450–14460. https://doi.org/10.1039/c7cp07623a
  • Sun, S., Liang, X., Zhang, X., Liu, T., Shi, Q., Song, Y., Jiang, Y., Wu, H., Jiang, Y., Lu, X., & Pang, D. (2015). Phosphoglycerate kinase-1 is a predictor of poor survival and a novel prognostic biomarker of chemoresistance to paclitaxel treatment in breast cancer. British Journal of Cancer, 112(8), 1332–1339. https://doi.org/10.1038/bjc.2015.114
  • Tougard, P., Bizebard, T., Ritco-Vonsovici, M., Minard, P., & Desmadril, M. (2002). Structure of a circularly permuted phosphoglycerate kinase. Acta Crystallographica. Section D, Biological Crystallography, 58(Pt 12), 2018–2023. https://doi.org/10.1107/s0907444902015548
  • Wang, S., Jiang, B., Zhang, T., Liu, L., Wang, Y., Wang, Y., Chen, X., Lin, H., Zhou, L., Xia, Y., Chen, L., Yang, C., Xiong, Y., Ye, D., & Guan, K.-L. (2015). Insulin and mTOR pathway regulate HDAC3-mediated deacetylation and activation of PGK1. PLoS Biology, 13(9), e1002243. https://doi.org/10.1371/journal.pbio.1002243
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Watson, H. C., Walker, N. P., Shaw, P. J., Bryant, T. N., Wendell, P. L., Fothergill, L. A., Perkins, R. E., Conroy, S. C., Dobson, M. J., & Tuite, M. F. (1982). Sequence and structure of yeast phosphoglycerate kinase. The EMBO Journal, 1(12), 1635–1640. https://doi.org/10.1002/j.1460-2075.1982.tb01366.x
  • Weiser, J., Shenkin, P. S., & Still, W. C. (1999). Optimization of Gaussian surface calculations and extension to solvent-accessible surface areas. Journal of Computational Chemistry, 20(7), 688–703. https://doi.org/10.1002/(SICI)1096-987X(199905)20:7<688::AID-JCC4>3.0.CO;2-F
  • Wilson, R. B., Solass, W., Archid, R., Weinreich, F. J., Königsrainer, A., & Reymond, M. A. (2019). Resistance to anoikis in transcoelomic shedding: The role of glycolytic enzymes. Pleura and Peritoneum, 4(1), 20190003. https://doi.org/10.1515/pp-2019-0003
  • Xu, L., Sun, H., Li, Y., Wang, J., & Hou, T. (2013). Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. The Journal of Physical Chemistry B, 117(28), 8408–8421. https://doi.org/10.1021/jp404160y
  • Yan, H., Yang, K., Xiao, H., Zou, Y. J., Zhang, W. B., & Liu, H. Y.. (2012). Over-expression of cofilin-1 and phosphoglycerate kinase 1 in astrocytomas involved in pathogenesis of radioresistance. CNS Neuroscience & Therapeutics, 18(9), 729–736.
  • Yang, W., & Lu, Z. (2013). Regulation and function of pyruvate kinase M2 in cancer. Cancer Letters, 339(2), 153–158.
  • Yang, W., & Lu, Z. (2015). Pyruvate kinase M2 at a glance. journal of Cell Science, 128(9), 1655–1660.
  • Young, T. A., Skordalakes, E., & Marqusee, S. (2007). Comparison of proteolytic susceptibility in phosphoglycerate kinases from yeast and E. coli: Modulation of conformational ensembles without altering structure or stability. Journal of Molecular Biology, 368(5), 1438–1447. https://doi.org/10.1016/j.jmb.2007.02.077
  • Zhang, D., Tai, L. K., Wong, L. L., Chiu, L.-L., Sethi, S. K., & Koay, E. S. (2005). Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer. Molecular & Cellular Proteomics: MCP, 4(11), 1686–1696. https://doi.org/10.1074/mcp.M400221-MCP200
  • Zhang, Y., Yu, G., Chu, H., Wang, X., Xiong, L., Cai, G., Liu, R., Gao, H., Tao, B., Li, W., Li, G., Liang, J., & Yang, W. (2018). Macrophage-associated PGK1 phosphorylation promotes aerobic glycolysis and tumorigenesis. Molecular Cell, 71(2), 201–215.e7. https://doi.org/10.1016/j.molcel.2018.06.023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.