189
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Molecular docking and dynamics studies for the identification of Nipah virus glycoprotein inhibitors from Indian medicinal plants

, , , , &
Pages 9211-9218 | Received 13 Aug 2022, Accepted 24 Nov 2022, Published online: 06 Dec 2022

References

  • Arabzadeh, A. M., Ansari-Dogaheh, M., Sharififar, F., Shakibaie, M., & Heidarbeigi, M. (2013). Anti herpes simplex-1 activity of a standard extract of Zataria multiflora Boiss. Pakistan Journal of Biological Sciences, 16(4), 180–184. https://doi.org/10.3923/pjbs.2013.180.184
  • Arunkumar, G., Chandni, R., Mourya, D. T., Singh, S. K., Sadanandan, R., Sudan, P., & Bhargava, B. (2019). Outbreak investigation of Nipah virus disease in Kerala, India, 2018. The Journal of Infectious Diseases, 219(12), 1867–1878. https://doi.org/10.1093/infdis/jiy612
  • Banerjee, S., Gupta, N., Kodan, P., Mittal, A., Ray, Y., Nischal, N., Soneja, M., Biswas, A., & Wig, N. (2019). Nipah virus disease: A rare and intractable disease. Intractable & Rare Diseases Research, 8(1), 1–8. https://doi.org/10.5582/irdr.2018.01130
  • Ben-Shabat, S., Yarmolinsky, L., Porat, D., & Dahan, A. (2020). Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Delivery and Translational Research, 10(2), 354–367. https://doi.org/10.1007/s13346-019-00691-6
  • Bjelkmar, P., Larsson, P., Cuendet, M. A., Hess, B., & Lindahl, E. (2010). Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. Journal of Chemical Theory and Computation, 6(2), 459–466. https://doi.org/10.1021/ct900549r
  • Bowden, T. A., Crispin, M., Harvey, D. J., Aricescu, A. R., Grimes, J. M., Jones, E. Y., & Stuart, D. I. (2008). Crystal structure and carbohydrate analysis of Nipah virus attachment glycoprotein: A template for antiviral and vaccine design. Journal of Virology, 82(23), 11628–11636. https://doi.org/10.1128/JVI.01344-08
  • Broder, C. C., Xu, K., Nikolov, D. B., Zhu, Z., Dimitrov, D. S., Middleton, D., Pallister, J., Geisbert, T. W., Bossart, K. N., & Wang, L. F. (2013). A treatment for and vaccine against the deadly Hendra and Nipah viruses. Antiviral Research, 100(1), 8–13. https://doi.org/10.1016/j.antiviral.2013.06.012
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 14101. https://doi.org/10.1063/1.2408420
  • Callies, O., Bedoya, L. M., Beltrán, M., Muñoz, A., Calderón, P. O., Osorio, A. A., Jiménez, I. A., Alcamí, J., & Bazzocchi, I. L. (2015). Isolation, structural modification, and HIV inhibition of pentacyclic Lupane-type triterpenoids from Cassine xylocarpa and Maytenus cuzcoina. Journal of Natural Products, 78(5), 1045–1055.
  • Chong, H.-T., Kamarulzaman, A., Tan, C.-T., Goh, K.-J., Thayaparan, T., Kunjapan, S. R., Chew, N.-K., Chua, K.-B., & Lam, S.-K. (2001). Treatment of acute Nipah encephalitis with Ribavirin. Annals of Neurology, 49(6), 810–813. https://doi.org/10.1002/ana.1062
  • Chua, K. B. (2003). Nipah virus outbreak in Malaysia. Journal of Clinical Virology: The Official Publication of the Pan American Society for Clinical Virology, 26(3), 265–275. https://doi.org/10.1016/s1386-6532(02)00268-8
  • Chua, K. B., Bellini, W. J., Rota, P. A., Harcourt, B. H., Tamin, A., Lam, S. K., Ksiazek, T. G., Rollin, P. E., Zaki, S. R., Shieh, W., Goldsmith, C. S., Gubler, D. J., Roehrig, J. T., Eaton, B., Gould, A. R., Olson, J., Field, H., Daniels, P., Ling, A. E., … Mahy, B. W. (2000). Nipah virus: a recently emergent deadly paramyxovirus. Science (New York, N.Y.), 288(5470), 1432–1435. https://doi.org/10.1126/science.288.5470.1432
  • Eaton, B. T., Broder, C. C., Middleton, D., & Wang, L. F. (2006). Hendra and Nipah viruses: Different and dangerous. Nature Reviews. Microbiology, 4(1), 23–35.
  • Epstein, J. H., Field, H. E., Luby, S., Pulliam, J. R., & Daszak, P. (2006). Nipah virus: Impact, origins, and causes of emergence. Current Infectious Disease Reports, 8(1), 59–65. https://doi.org/10.1007/s11908-006-0036-2
  • Erbar, S., & Maisner, A. (2010). Nipah virus infection and glycoprotein targeting in endothelial cells. Virology Journal, 7, 305. https://doi.org/10.1186/1743-422X-7-305
  • Ghildiyal, R., Prakash, V., Chaudhary, V. K., Gupta, V., & Gabrani, R. (2020). Phytochemicals as antiviral agents: Recent updates. In Plant-Derived Bioactives, 279–295. https://doi.org/10.1007/978-981-15-1761-7_12
  • Harcourt, B. H., Lowe, L., Tamin, A., Liu, X., Bankamp, B., Bowden, N., Rollin, P. E., Comer, J. A., Ksiazek, T. G., Hossain, M. J., Gurley, E. S., Breiman, R. F., Bellini, W. J., & Rota, P. A. (2005). Genetic characterization of Nipah virus, Bangladesh, 2004. Emerging Infectious Diseases, 11(10), 1594–1597. https://doi.org/10.3201/eid1110.050513
  • Hauser, N., Gushiken, A. C., Narayanan, S., Kottilil, S., & Chua, J. V. (2021). Evolution of Nipah virus infection: Past, present, and future considerations. Tropical Medicine and Infectious Disease, 6(1), 24. https://doi.org/10.3390/tropicalmed6010024
  • Kalbhor, M. S., Bhowmick, S., Alanazi, A. M., Patil, P. C., & Islam, M. A. (2021). Multi-step molecular docking and dynamics simulation-based screening of large antiviral specific chemical libraries for identification of Nipah virus glycoprotein inhibitors. Biophysical Chemistry, 270, 106537. https://doi.org/10.1016/j.bpc.2020.106537
  • Lemkul, J. (2019). From proteins to perturbed Hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package. Living Journal of Computational Molecular Science, 1(1), 1–53. https://doi.org/10.33011/livecoms.1.1.5068
  • Looi, L. M., & Chua, K. B. (2007). Lessons from the Nipah virus outbreak in Malaysia. The Malaysian Journal of Pathology, 29(2), 63–67.
  • Loomis, R. J., Stewart-Jones, G., Tsybovsky, Y., Caringal, R. T., Morabito, K. M., McLellan, J. S., Chamberlain, A. L., Nugent, S. T., Hutchinson, G. B., Kueltzo, L. A., Mascola, J. R., & Graham, B. S. (2020). Structure-based design of Nipah virus vaccines: A generalizable approach to paramyxovirus immunogen development. Frontiers in Immunology, 11, 842. https://doi.org/10.3389/fimmu.2020.00842
  • Luby, S. P. (2013). The pandemic potential of Nipah virus. Antiviral Research, 100(1), 38–43. https://doi.org/10.1016/j.antiviral.2013.07.011
  • Moradi, M. T., Rafieian-Kopaei, M., & Karimi, A. (2016). A review study on the effect of Iranian herbal medicines against in vitro replication of herpes simplex virus. Avicenna Journal of Phytomedicine, 6(5), 506–515.
  • Mourya, D. T., Yadav, P., Sudeep, A. B., Gokhale, M. D., Gupta, N., Gangakhedkar, R. R., & Bhargava, B. (2019). Spatial association between a Nipah virus outbreak in India and Nipah virus infection in Pteropus bats. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 69(2), 378–379. https://doi.org/10.1093/cid/ciy1093
  • Ochani, R. K., Batra, S., Shaikh, A., & Asad, A. (2019). Nipah virus—The rising epidemic: A review. Le Infezioni in Medicina, 27(2), 117–127.
  • Pathania, S., Randhawa, V., & Kumar, M. (2020). Identifying potential entry inhibitors for emerging Nipah virus by molecular docking and chemical-protein interaction network. Journal of Biomolecular Structure & Dynamics, 38(17), 5108–5125. https://doi.org/10.1080/07391102.2019.1696705
  • Prasathkumar, M., Anisha, S., Dhrisya, C., Becky, R., & Sadhasivam, S. (2021). Therapeutic and pharmacological efficacy of selective Indian medicinal plants—A review. Phytomedicine Plus, 1(2), 100029. https://doi.org/10.1016/j.phyplu.2021.100029
  • Rao, S. N., Head, M. S., Kulkarni, A., & LaLonde, J. M. (2007). Validation studies of the site-directed docking program LibDock. Journal of Chemical Information and Modeling, 47(6), 2159–2171. https://doi.org/10.1021/ci6004299
  • Ropón-Palacios, G., Chenet-Zuta, M. E., Olivos-Ramirez, G. E., Otazu, K., Acurio-Saavedra, J., & Camps, I. (2020). Potential novel inhibitors against emerging zoonotic pathogen Nipah virus: A virtual screening and molecular dynamics approach. Journal of Biomolecular Structure & Dynamics, 38(11), 3225–3234. https://doi.org/10.1080/07391102.2019.1655480
  • Shariff, M. (2019). Nipah virus infection: A review. Epidemiology and Infection, 147, e95. https://doi.org/10.1017/S0950268819000086
  • Sharma, V., Kaushik, S., Kumar, R., Yadav, J. P., & Kaushik, S. (2019). Emerging trends of Nipah virus: A review. Reviews in Medical Virology, 29(1), e2010. https://doi.org/10.1002/rmv.2010
  • Sheng, Y. J., Yin, Y. W., Ma, Y. Q., & Ding, H. M. (2021). Improving the performance of MM/PBSA in protein–protein interactions via the screening electrostatic energy. Journal of Chemical Information and Modeling, 61(5), 2454–2462. https://doi.org/10.1021/acs.jcim.1c00410
  • Singh, R. K., Dhama, K., Chakraborty, S., Tiwari, R., Natesan, S., Khandia, R., Munjal, A., Vora, K. S., Latheef, S. K., Karthik, K., Singh Malik, Y., Singh, R., Chaicumpa, W., & Mourya, D. T. (2019). Nipah virus: Epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies—A comprehensive review. The Veterinary Quarterly, 39(1), 26–55. https://doi.org/10.1080/01652176.2019.1580827
  • Snell, N. J. C. (2004). Ribavirin therapy for Nipah virus infection. Journal of Virology, 78(18), 10211–10211. https://doi.org/10.1128/JVI.78.18.10211.2004
  • Spiropoulou, C. F. (2019). Nipah virus outbreaks: Still small but extremely lethal. The Journal of Infectious Diseases, 219(12), 1855–1857. https://doi.org/10.1093/infdis/jiy611
  • Vidal, V., Potterat, O., Louvel, S., Hamy, F., Mojarrab, M., Sanglier, J. J., Klimkait, T., & Hamburger, M. (2012). Library-based discovery and characterization of daphnane diterpenes as potent and selective HIV inhibitors in Daphne gnidium. Journal of Natural Products, 75(3), 414–419. https://doi.org/10.1021/np200855d
  • Wong, K. T., Shieh, W. J., Kumar, S., Norain, K., Abdullah, W., Guarner, J., Goldsmith, C. S., Chua, K. B., Lam, S. K., Tan, C. T., Goh, K. J., Chong, H. T., Jusoh, R., Rollin, P. E., Ksiazek, T. G., Zaki, S. R., & Nipah Virus Pathology, W. G. (2002). Nipah virus infection: Pathology and pathogenesis of an emerging paramyxoviral zoonosis. The American Journal of Pathology, 161(6), 2153–2167. https://doi.org/10.1016/S0002-9440(10)64493-8
  • Zakaryan, H., Arabyan, E., Oo, A., & Zandi, K. (2017). Flavonoids: Promising natural compounds against viral infections. Archives of Virology, 162(9), 2539–2551. https://doi.org/10.1007/s00705-017-3417-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.