210
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Computational study to investigate Proteus mirabilis proteomes for multi-epitope vaccine construct design

, , , , , , , , , & ORCID Icon show all
Pages 10190-10201 | Received 18 Jul 2022, Accepted 25 Nov 2022, Published online: 07 Dec 2022

References

  • Ahmad, S., Ranaghan, K. E., & Azam, S. S. (2019). Combating tigecycline resistant Acinetobacter baumannii: A leap forward towards multi-epitope based vaccine discovery. European Journal of Pharmaceutical Sciences, 132, 1–17. https://doi.org/10.1016/j.ejps.2019.02.023
  • Ahmed, M. (2014). Commercial crocodile farming in Bangladesh, past, present and future possibilities.
  • Albekairi, T. H., Alshammari, A., Alharbi, M., Alshammary, A. F., Tahir Ul Qamar, M., Anwar, T., Ismail, S., Shaker, B., & Ahmad, S. (2022). Design of a Multi-Epitope vaccine against Tropheryma whipplei using immunoinformatics and molecular dynamics simulation techniques. Vaccines, 10(5), 691. https://doi.org/10.3390/vaccines10050691
  • Albekairi, T. H., Alshammari, A., Alharbi, M., Alshammary, A. F., Tahir Ul Qamar, M., Ullah, A., Irfan, M., & Ahmad, S. (2022). Designing of a novel multi-antigenic epitope-based vaccine against E. hormaechei: An intergraded reverse vaccinology and immunoinformatics approach. Vaccines, 10(5), 665. https://doi.org/10.3390/vaccines10050665
  • Alharbi, M., Alshammari, A., Alasmari, A. F., Alharbi, S. M., Ul Qamar, M., Ullah, A., Ahmad, S., Irfan, M., & Khalil, A. A. K. (2022). Designing of a recombinant multi-epitopes based vaccine against Enterococcus mundtii using bioinformatics and immunoinformatics approaches. International Journal of Environmental Research and Public Health, 19(6), 3729. https://doi.org/10.3390/ijerph19063729
  • Ali, A., Naz, A., Soares, S. C., Bakhtiar, M., Tiwari, S., Hassan, S. S., Hanan, F., Ramos, R., Pereira, U., & Barh, D., Figueiredo, H. C. P., Ussery, D. W., Miyoshi, A., Silva, A., & Azevedo, V. (2015). Pan-genome analysis of human gastric pathogen H. pylori: Comparative genomics and pathogenomics approaches to identify regions associated with pathogenicity and prediction of potential core therapeutic targets. BioMed Research International, 2015.
  • Alshammari, A., Alharbi, M., Alghamdi, A., Alharbi, S. A., Ashfaq, U. A., Tahir Ul Qamar, M., Ullah, A., Irfan, M., Khan, A., & Ahmad, S. (2022). Computer-aided multi-epitope vaccine design against Enterobacter xiangfangensis. International Journal of Environmental Research and Public Health, 19(13), 7723. https://doi.org/10.3390/ijerph19137723
  • Armbruster, C. E., Mobley, H. L. T., & Pearson, M. M. (2018). Pathogenesis of Proteus mirabilis infection. EcoSal Plus, 8(1). https://doi.org/10.1128/ecosalplus.ESP-0009-2017
  • Ayipo, Y. O., Alananzeh, W. A., Ahmad, I., Patel, H., & Mordi, M. N. (2022). Structural modelling and in silico pharmacology of $β$-carboline alkaloids as potent 5-HT1A receptor antagonists and reuptake inhibitors. Journal of Biomolecular Structure and Dynamics, 26, 1–17.
  • Barh, D., Barve, N., Gupta, K., Chandra, S., Jain, N., Tiwari, S., Leon-Sicairos, N., Canizalez-Roman, A., dos Santos, A. R., Hassan, S. S., Almeida, S., Ramos, R. T. J., de Abreu, V. A. C., Carneiro, A. R., Soares, S. d C., Castro, T. L. d P., Miyoshi, A., Silva, A., Kumar, A., … Azevedo, V. (2013). Exoproteome and secretome derived broad spectrum novel drug and vaccine candidates in Vibrio cholerae targeted by Piper betel derived compounds. PloS One, 8(1), e52773. https://doi.org/10.1371/journal.pone.0052773
  • Baseer, S., Ahmad, S., Ranaghan, K. E., & Azam, S. S. (2017). Towards a peptide-based vaccine against Shigella sonnei: A subtractive reverse vaccinology based approach. Biologicals, 50, 87–99. https://doi.org/10.1016/j.biologicals.2017.08.004
  • Bibi, S., Ullah, I., Zhu, B., Adnan, M., Liaqat, R., Kong, W.-B., & Niu, S. (2021). In silico analysis of epitope-based vaccine candidate against tuberculosis using reverse vaccinology. Scientific Reports, 11, 1249. https://doi.org/10.1038/s41598-020-80899-6
  • Blast, N. (2015). Basic local alignment search tool. National Library of Medicine: National Center for Biotechnology Information.
  • Broomfield, R. J., Morgan, S. D., Khan, A., & Stickler, D. J. (2009). Crystalline bacterial biofilm formation on urinary catheters by urease-producing urinary tract pathogens: A simple method of control. Journal of Medical Microbiology, 58(Pt 10), 1367–1375.
  • Carugo, O. (2003). How root-mean-square distance (rmsd) values depend on the resolution of protein structures that are compared. Journal of Applied Crystallography, 36(1), 125–128. https://doi.org/10.1107/S0021889802020502
  • Case, D. A., Babin, V., Berryman, J. T., Betz, R. M., Cai, Q., Cerutti, D. S., Cheatham, T. E., III, Darden, T. A., Duke, R. E., & Gohlke, H. (2014). The FF14SB force field. Amber, 14, 29–31.
  • Chaudhari, N. M., Gupta, V. K., & Dutta, C. (2016). BPGA-an ultra-fast pan-genome analysis pipeline. Scientific Reports, 6, 24373. https://doi.org/10.1038/srep24373
  • Chen, C.-Y., Chen, Y.-H., Lu, P.-L., Lin, W.-R., Chen, T.-C., & Lin, C.-Y. (2012). Proteus mirabilis urinary tract infection and bacteremia: Risk factors, clinical presentation, and outcomes. Journal of Microbiology. Immunology and Infection, 45(3), 228–236. https://doi.org/10.1016/j.jmii.2011.11.007
  • Cheng, J., Randall, A. Z., Sweredoski, M. J., & Baldi, P. (2005). SCRATCH: A protein structure and structural feature prediction server. Nucleic Acids Research, 33(Web Server issue), W72–W76.
  • Chen, L., Yang, J., Yu, J., Yao, Z., Sun, L., Shen, Y., & Jin, Q. (2005). VFDB: a reference database for bacterial virulence factors. Nucleic Acids Research, 33(Database issue), D325–D328.
  • Chen, Y., Yu, P., Luo, J., & Jiang, Y. (2003). Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mammalian Genome, 14(12), 859–865.
  • Chung, E. H. (2014). Vaccine allergies. Clinical and Experimental Vaccine Research, 3(1), 50–57. https://doi.org/10.7774/cevr.2014.3.1.50
  • Dar, H. A., Ismail, S., Waheed, Y., Ahmad, S., Jamil, Z., Aziz, H., Hetta, H. F., & Muhammad, K. (2021). Designing a multi-epitope vaccine against Mycobacteroides abscessus by pangenome-reverse vaccinology. Scientific Reports, 11, 11197. https://doi.org/10.1038/s41598-021-90868-2
  • Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v. 2—a server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 2278. https://doi.org/10.1007/s00894-014-2278-5
  • Dombkowski, A. A. (2003). Disulfide by DesignTM: A computational method for the rational design of disulfide bonds in proteins. Bioinformatics (Oxford, England), 19(14), 1852–1853. https://doi.org/10.1093/bioinformatics/btg231
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4
  • Ehsan, N., Ahmad, S., Azam, S. S., Rungrotmongkol, T., & Uddin, R. (2018). Proteome-wide identification of epitope-based vaccine candidates against multi-drug resistant Proteus mirabilis. Biologicals, 55, 27–37.
  • Excler, J. L., Saville, M., Berkley, S., & Kim, J. H. (2021). Vaccine development for emerging infectious diseases. Nature Medicine, 27(4), 591–600. https://doi.org/10.1038/s41591-021-01301-0
  • Falsafi-Zadeh, S., Karimi, Z., & Galehdari, H. (2012). VMD DisRg: New user-friendly implement for calculation distance and radius of gyration in VMD program. Bioinformation, 8(7), 341–343. https://doi.org/10.6026/97320630008341
  • Fathollahi, M., Fathollahi, A., Motamedi, H., Moradi, J., Alvandi, A., & Abiri, R. (2021). In silico vaccine design and epitope mapping of New Delhi metallo-beta-lactamase (NDM): An immunoinformatics approach. BMC Bioinformatics, 22(1), 1–24. https://doi.org/10.1186/s12859-021-04378-z
  • Geer, L. Y., Marchler-Bauer, A., Geer, R. C., Han, L., He, J., He, S., Liu, C., Shi, W., & Bryant, S. H. (2010). The NCBI biosystems database. Nucleic Acids Research, 38(Database issue), D492–D496. https://doi.org/10.1093/nar/gkp858
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Girlich, D., Bonnin, R. A., Dortet, L., & Naas, T. (2020). Genetics of acquired antibiotic resistance genes in Proteus spp. Frontiers in Microbiology, 11, 256. https://doi.org/10.3389/fmicb.2020.00256
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–W531.
  • Gul, S., Ahmad, S., Ullah, A., Ismail, S., Khurram, M., Tahir Ul Qamar, M., Hakami, A. R., Alkhathami, A. G., Alrumaihi, F., & Allemailem, K. S. (2022). Designing a recombinant vaccine against Providencia rettgeri using immunoinformatics approach. Vaccines, 10(2), 189. https://doi.org/10.3390/vaccines10020189
  • Huang, Y., Niu, B., Gao, Y., Fu, L., & Li, W. (2010). CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics (Oxford, England), 26(5), 680–682.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Ismail, S., Ahmad, S., & Azam, S. S. (2020). Vaccinomics to design a novel single chimeric subunit vaccine for broad-spectrum immunological applications targeting nosocomial Enterobacteriaceae pathogens. European Journal of Pharmaceutical Sciences, 146, 105258. https://doi.org/10.1016/j.ejps.2020.105258
  • Ismail, S., Shahid, F., Khan, A., Bhatti, S., Ahmad, S., Naz, A., Almatroudi, A., & Ul Qamar, M. T. (2021). Pan-vaccinomics approach towards a universal vaccine candidate against WHO priority pathogens to address growing global antibiotic resistance. Computers in Biology and Medicine, 136, 104705. https://doi.org/10.1016/j.compbiomed.2021.104705
  • Izaguirre, J. A., Catarello, D. P., Wozniak, J. M., & Skeel, R. D. (2001). Langevin stabilization of molecular dynamics. The Journal of Chemical Physics, 114(5), 2090–2098. https://doi.org/10.1063/1.1332996
  • Jacobsen, S. á., Stickler, D. J., Mobley, H. L. T., & Shirtliff, M. E. (2008). Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clinical Microbiology Reviews, 21(1), 26–59.
  • Jaydari, A., Nazifi, N., & Forouharmehr, A. (2020). Computational design of a novel multi-epitope vaccine against Coxiella burnetii. Human Immunology, 81(10-11), 596–605. https://doi.org/10.1016/j.humimm.2020.05.010
  • Jespersen, M. C., Peters, B., Nielsen, M., & Marcatili, P. (2017). BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research, 45(W1), W24–W29. https://doi.org/10.1093/nar/gkx346
  • Ko, J., Park, H., Heo, L., & Seok, C. (2012). GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research, 40(Web Server issue), W294–W297.
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein–protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Kräutler, V., van Gunsteren, W. F., & Hünenberger, P. H. (2001). A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of Computational Chemistry, 22(5), 501–508. https://doi.org/10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
  • Kumari, R., Kumar, R., Consortium, O. S. D. D., & Lynn, A. (2014). g_mmpbsa— A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Li, X., Lockatell, C. V., Johnson, D. E., Lane, M. C., Warren, J. W., & Mobley, H. L. T. (2004). Development of an intranasal vaccine to prevent urinary tract infection by Proteus mirabilis. Infection and Immunity, 72(1), 66–75. https://doi.org/10.1128/IAI.72.1.66-75.2004
  • Mallik, B., & Morikis, D. (2006). Applications of molecular dynamics simulations in immunology: A useful computational method in aiding vaccine design. Current Proteomics, 3(4), 259–270. https://doi.org/10.2174/157016406780655568
  • Mathur, S., Sabbuba, N. A., Suller, M. T. E., Stickler, D. J., & Feneley, R. C. L. (2005). Genotyping of urinary and fecal Proteus mirabilis isolates from individuals with long-term urinary catheters. European Journal of Clinical Microbiology & Infectious Diseases, 24(9), 643–644. https://doi.org/10.1007/s10096-005-0003-0
  • Mobley, H. L. T. (2019). Proteus mirabilis overview. In Proteus mirabilis (pp. 1–4). Springer.
  • Mobley, H. L. T., & Chippendale, G. R. (1990). Hemagglutinin, urease, and hemolysin production by Proteus mirabilis from clinical sources. The Journal of Infectious Diseases, 161(3), 525–530.
  • Mora, M., Veggi, D., Santini, L., Pizza, M., & Rappuoli, R. (2003). Reverse vaccinology. Drug Discovery Today, 8(10), 459–464. https://doi.org/10.1016/s1359-6446(03)02689-8
  • Naz, A., Awan, F. M., Obaid, A., Muhammad, S. A., Paracha, R. Z., Ahmad, J., & Ali, A. (2015). Identification of putative vaccine candidates against Helicobacter pylori exploiting exoproteome and secretome: A reverse vaccinology based approach. Infection, Genetics and Evolution, 32, 280–291.
  • Naz, K., Naz, A., Ashraf, S. T., Rizwan, M., Ahmad, J., Baumbach, J., & Ali, A. (2019). PanRV: Pangenome-reverse vaccinology approach for identifications of potential vaccine candidates in microbial pangenome. BMC Bioinformatics, 20(1), 123.
  • Olson, M. E., Ceri, H., Morck, D. W., Buret, A. G., & Read, R. R. (2002). Biofilm bacteria: formation and comparative susceptibility to antibiotics. Canadian Journal of Veterinary Research = Revue Canadienne de Recherche Veterinaire, 66(2), 86–92.
  • ProtParam, E. (2017). ExPASy-ProtParam tool.
  • Rapin, N., Lund, O., & Castiglione, F. (2012). C-Immsim 10.1 server.
  • Rappuoli, R. (2004). From Pasteur to genomics: progress and challenges in infectious diseases. Nature Medicine, 10(11), 1177–1185. https://doi.org/10.1038/nm1129
  • Rashid, M. I., Naz, A., Ali, A., & Andleeb, S. (2017). Prediction of vaccine candidates against Pseudomonas aeruginosa: An integrated genomics and proteomics approach. Genomics, 109(3-4), 274–283. https://doi.org/10.1016/j.ygeno.2017.05.001
  • Rida, T., Ahmad, S., Ullah, A., Ismail, S., Tahir Ul Qamar, M., Afsheen, Z., Khurram, M., Saqib Ishaq, M., Alkhathami, A. G., Alatawi, E. A., Alrumaihi, F., & Allemailem, K. S. (2022). Pan-genome analysis of oral bacterial pathogens to predict a potential novel multi-epitopes vaccine candidate. International Journal of Environmental Research and Public Health, 19(14), 8408. https://doi.org/10.3390/ijerph19148408
  • Rizwan, M., Naz, A., Ahmad, J., Naz, K., Obaid, A., Parveen, T., Ahsan, M., & Ali, A. (2017). VacSol: a high throughput in silico pipeline to predict potential therapeutic targets in prokaryotic pathogens using subtractive reverse vaccinology. BMC Bioinformatics, 18(1), 106. https://doi.org/10.1186/s12859-017-1540-0
  • Sajjad, R., Ahmad, S., & Azam, S. S. (2020). In silico screening of antigenic B-cell derived T-cell epitopes and designing of a multi-epitope peptide vaccine for Acinetobacter nosocomialis. Journal of Molecular Graphics & Modelling, 94, 107477. https://doi.org/10.1016/j.jmgm.2019.107477
  • Sargsyan, K., Grauffel, C., & Lim, C. (2017). How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of Chemical Theory and Computation, 13(4), 1518–1524. https://doi.org/10.1021/acs.jctc.7b00028
  • Schaffer, J. N., & Pearson, M. M. (2017). Proteus mirabilis and urinary tract infections. In Urinary tract infections: Molecular pathogenesis and clinical management (pp. 383–433).
  • Schafmeister, C., Ross, W. S., & Romanovski, V. (1995). The leap module of AMBER. University of California.
  • Seib, K. L., Zhao, X., & Rappuoli, R. (2012). Developing vaccines in the era of genomics: A decade of reverse vaccinology. Clinical Microbiology and Infection, 18(SUPPL. 5), 109–116. https://doi.org/10.1111/j.1469-0691.2012.03939.x
  • Shivanika, C., Kumar, D., Ragunathan, V., Tiwari, P., Sumitha., & A., Others. (2020). Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure & Dynamics, 1, 585–611.
  • Singh, A., Vanga, S. K., Orsat, V., & Raghavan, V. (2018). Application of molecular dynamic simulation to study food proteins: A review. Critical Reviews in Food Science and Nutrition, 58(16), 2779–2789. https://doi.org/10.1080/10408398.2017.1341864
  • Stratmann, T. (2015). Cholera toxin subunit B as adjuvant––an accelerator in protective immunity and a break in autoimmunity. Vaccines, 3(3), 579–596. https://doi.org/10.3390/vaccines3030579
  • Tahir Ul Qamar, M., Ahmad, S., Fatima, I., Ahmad, F., Shahid, F., Naz, A., Abbasi, S. W., Khan, A., Mirza, M. U., Ashfaq, U. A., & Chen, L.-L. (2021). Designing multi-epitope vaccine against Staphylococcus aureus by employing subtractive proteomics, reverse vaccinology and immuno-informatics approaches. Computers in Biology and Medicine, 132, 104389. https://doi.org/10.1016/j.compbiomed.2021.104389
  • Turner, P. J. (2005). XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology.
  • Ullah, A., Ahmad, S., Ismail, S., Afsheen, Z., Khurram, M., Tahir Ul Qamar, M., AlSuhaymi, N., Alsugoor, M. H., & Allemailem, K. S. (2021). Towards a novel multi-epitopes chimeric vaccine for simulating strong immune responses and protection against Morganella morganii. International Journal of Environmental Research and Public Health, 18(20), 10961. https://doi.org/10.3390/ijerph182010961
  • Vita, R., Overton, J. A., Greenbaum, J. A., Ponomarenko, J., Clark, J. D., Cantrell, J. R., Wheeler, D. K., Gabbard, J. L., Hix, D., Sette, A., & Peters, B. (2015). The immune epitope database (IEDB) 3.0. Nucleic Acids Research, 43(Database issue), D405–D412.
  • Wadood, A., Jamal, A., Riaz, M., Khan, A., Uddin, R., Jelani, M., & Azam, S. S. (2018). Subtractive genome analysis for in silico identification and characterization of novel drug targets in Streptococcus pneumonia strain JJA. Microbial Pathogenesis, 115, 194–198. https://doi.org/10.1016/j.micpath.2017.12.063
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2001). Antechamber: An accessory software package for molecular mechanical calculations. Journal of the American Chemical Society, 222, U403.
  • Wasfi, R., Hamed, S. M., Amer, M. A., & Fahmy, L. I. (2020). Proteus mirabilis biofilm: development and therapeutic strategies. Frontiers in Cellular and Infection Microbiology, 10, 414. https://doi.org/10.3389/fcimb.2020.00414
  • Wise, N. M., Wagner, S. J., Worst, T. J., Sprague, J. E., & Oechsle, C. M. (2021). Comparison of swab types for collection and analysis of microorganisms. MicrobiologyOpen, 10(6), e1244. https://doi.org/10.1002/mbo3.1244
  • Yu, N. Y., Wagner, J. R., Laird, M. R., Melli, G., Rey, S., Lo, R., Dao, P., Sahinalp, S. C., Ester, M., Foster, L. J., & Brinkman, F. S. L. & others. (2010). PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics (Oxford, England), 26(13), 1608–1615. https://doi.org/10.1093/bioinformatics/btq249
  • Zahroh, H., Ma’rup, A., Tambunan, U. S. F., & Parikesit, A. A. (2016). Immunoinformatics approach in designing epitopebased vaccine against meningitis-inducing bacteria (Streptococcus pneumoniae,Neisseria meningitidis,and Haemophilus influenzae type b. Drug Target Insights, 10, 19–29. https://doi.org/10.4137/DTI.S384_

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.