677
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Designing a multi-epitope candidate vaccine by employing immunoinformatics approaches to control African swine fever spread

, , , ORCID Icon, , & ORCID Icon show all
Pages 10214-10229 | Received 22 Jul 2022, Accepted 25 Nov 2022, Published online: 12 Dec 2022

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Affairs, M. O A. F. A., R. (2022). ASF - Information of current status of occurrences, https://www.mafra.go.kr/FMD-AI2/2145/subview.do.
  • Akhtar, N., Joshi, A., Kaushik, V., Kumar, M., & Mannan, M. A.-u. (2021a). In-silico design of a multivalent epitope-based vaccine against Candida auris. Microbial Pathogenesis, 155, 104879. https://doi.org/10.1016/j.micpath.2021.104879
  • Akhtar, N., Joshi, A., Singh, J., & Kaushik, V. (2021b). Design of a novel and potent multivalent epitope based human cytomegalovirus peptide vaccine: An immunoinformatics approach. Journal of Molecular Liquids, 335, 116586. https://doi.org/10.1016/j.molliq.2021.116586
  • Ali, M., Pandey, R. K., Khatoon, N., Narula, A., Mishra, A., & Prajapati, V. K. (2017). Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Scientific Reports, 7(9232), 1-13. https://doi.org/10.1038/s41598-017-09199-w
  • Bajusz, D., Rácz, A., & Héberger, K. (2015). Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? Journal of Cheminformatics, 7(1), 20–20. https://doi.org/10.1186/s13321-015-0069-3
  • Bech-Nielsen, S., Fernandez, J., Martinez-Pereda, F., Espinosa, J., Perez Bonilla, Q., & Sanchez-Vizcaino, J. M. (1995). A case study of an outbreak of African swine fever in Spain. The British Veterinary Journal, 151(2), 203–214. https://doi.org/10.1016/s0007-1935(95)80012-3
  • Bibi, S., Ullah, I., Zhu, B., Adnan, M., Liaqat, R., Kong, W.-B., & Niu, S. (2021). In silico analysis of epitope-based vaccine candidate against tuberculosis using reverse vaccinology. Scientific Reports, 11(1249), 1-16. https://doi.org/10.1038/s41598-020-80899-6
  • Blome, S., Gabriel, C., & Beer, M. (2014). Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine, 32(31), 3879–3882. https://doi.org/10.1016/j.vaccine.2014.05.051
  • Breese, S. S., Stone, S. S., Deboer, C. J., & Hess, W. R. (1967). Electron microscopy of the interaction of African swine fever virus with ferritin-conjugated antibody. Virology, 31(3), 508–513. https://doi.org/10.1016/0042-6822(67)90232-2
  • Buchan, D., W., A., Minneci, F., Nugent, T. C. O., Bryson, K., & Jones, D. T. (2013). Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Research, 41(Web Server issue), W349–W357. https://doi.org/10.1093/nar/gkt381
  • Burmakina, G., Malogolovkin, A., Tulman, E. R., Xu, W., Delhon, G., Kolbasov, D., & Rock, D. L. (2019). Identification of T-cell epitopes in African swine fever virus CD2v and C-type lectin proteins. The Journal of General Virology, 100(2), 259–265. https://doi.org/10.1099/jgv.0.001195
  • Chauhan, V., Rungta, T., Goyal, K., & Singh, M. P. (2019). Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach. Scientific Reports, 9(1), 2517–2517. https://doi.org/10.1038/s41598-019-39299-8
  • Chawla, M., Abdel-Azeim, S., Oliva, R., & Cavallo, L. (2014). Higher order structural effects stabilizing the reverse Watson-Crick Guanine-Cytosine base pair in functional RNAs. Nucleic Acids Research, 42(2), 714–726. https://doi.org/10.1093/nar/gkt800
  • Chawla, M., Credendino, R., Oliva, R., & Cavallo, L. (2015a). Structural and energetic impact of non-natural 7-Deaza-8-Azaadenine and its 7-substituted derivatives on H-bonding potential with uracil in RNA molecules. The Journal of Physical Chemistry. B, 119(41), 12982–12989. https://doi.org/10.1021/acs.jpcb.5b06861
  • Chawla, M., Credendino, R., Poater, A., Oliva, R., & Cavallo, L. (2015b). Structural stability, acidity, and halide selectivity of the fluoride Riboswitch recognition site. Journal of the American Chemical Society, 137(1), 299–306. https://doi.org/10.1021/ja510549b
  • Chawla, M., Gorle, S., Shaikh, A. R., Oliva, R., & Cavallo, L. (2021). Replacing thymine with a strongly pairing fifth Base: A combined quantum mechanics and molecular dynamics study. Computational and Structural Biotechnology Journal, 19, 1312–1324. https://doi.org/10.1016/j.csbj.2021.02.006
  • Chawla, M., Oliva, R., Bujnicki, J. M., & Cavallo, L. (2015c). An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies. Nucleic Acids Research, 43(14), 6714–6729. https://doi.org/10.1093/nar/gkv606
  • Chawla, M., Poater, A., Besalú-Sala, P., Kalra, K., Oliva, R., & Cavallo, L. (2018). Theoretical characterization of sulfur-to-selenium substitution in an emissive RNA alphabet: Impact on H-bonding potential and photophysical properties. Physical Chemistry Chemical Physics : PCCP, 20(11), 7676–7685. https://doi.org/10.1039/c7cp07656h
  • Costard, S., Wieland, B., de Glanville, W., Jori, F., Rowlands, R., Vosloo, W., Roger, F., Pfeiffer, D. U., & Dixon, L. K. (2009). African swine fever: How can global spread be prevented? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1530), 2683–2696. https://doi.org/10.1098/rstb.2009.0098
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: AnN⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dimitrov, I., Naneva, L., Doytchinova, I., & Bangov, I. (2014). AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics (Oxford, England), 30(6), 846–851. https://doi.org/10.1093/bioinformatics/btt619
  • Dixon, L. K., Chapman, D. A. G., Netherton, C. L., & Upton, C. (2013). African swine fever virus replication and genomics. Virus Research, 173(1), 3–14. https://doi.org/10.1016/j.virusres.2012.10.020
  • Domínguez, M. A., Landi, V., Martínez, A., & Garrido, J. J. (2014). Identification and functional characterization of novel genetic variations in Porcine TLR5 promoter. DNA and Cell Biology, 33(7), 469–476. https://doi.org/10.1089/dna.2013.2318
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4–4. https://doi.org/10.1186/1471-2105-8-4
  • Eustace Montgomery, R. (1921). On a form of Swine Fever occurring in British East Africa (Kenya Colony). Journal of Comparative Pathology and Therapeutics, 34, 159–191. https://doi.org/10.1016/s0368-1742(21)80031-4
  • Faber, E., Tedin, K., Speidel, Y., Brinkmann, M. M., & Josenhans, C. (2018). Functional expression of TLR5 of different vertebrate species and diversification in intestinal pathogen recognition. Scientific Reports, 8(11287), 1-16. https://doi.org/10.1038/s41598-018-29371-0
  • Flamme, M., Röthlisberger, P., Levi-Acobas, F., Chawla, M., Oliva, R., Cavallo, L., Gasser, G., Marlière, P., Herdewijn, P., & Hollenstein, M. (2020). Enzymatic formation of an artificial base pair using a modified purine nucleoside triphosphate. ACS Chemical Biology, 15(11), 2872–2884. https://doi.org/10.1021/acschembio.0c00396
  • Galindo, I., & Alonso, C. (2017). African Swine Fever Virus: A review. Viruses, 9(5), 103. https://doi.org/10.3390/v9050103
  • Gasteiger, E. (2005). The proteomics protocols handbook (pp. 571–607). Humana Press.
  • Gogin, A., Gerasimov, V., Malogolovkin, A., & Kolbasov, D. (2013). African swine fever in the North Caucasus region and the Russian Federation in years 2007–2012. Virus Research, 173(1), 198–203. https://doi.org/10.1016/j.virusres.2012.12.007
  • Gómez-Puertas, P., Rodríguez, F., Oviedo, J. M., Brun, A., Alonso, C., & Escribano, J. M. (1998). The African Swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune Response. Virology, 243(2), 461–471. https://doi.org/10.1006/viro.1998.9068
  • Gómez-Puertas, P., Rodríguez, F., Oviedo, J. M., Ramiro-Ibáñez, F., Ruiz-Gonzalvo, F., Alonso, C., & Escribano, J. M. (1996). Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. Journal of Virology, 70(8), 5689–5694. https://doi.org/10.1128/JVI.70.8.5689-5694.1996
  • Gonzalez, H. C., Darré, L., & Pantano, S. (2013). Transferable mixing of atomistic and coarse-grained water models. The Journal of Physical Chemistry. B, 117(46), 14438–14448. https://doi.org/10.1021/jp4079579
  • Grewal, R. K., Shaikh, A. R., Gorle, S., Kaur, M., Videira, P. A., Cavallo, L., & Chawla, M. (2021). Structural insights in mammalian sialyltransferases and fucosyltransferases: We have come a long way, but it is still a long way down. Molecules, 26(17), 5203. https://doi.org/10.3390/molecules26175203
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–W531. https://doi.org/10.1093/nar/gki376
  • Hajighahramani, N., Nezafat, N., Eslami, M., Negahdaripour, M., Rahmatabadi, S. S., & Ghasemi, Y. (2017). Immunoinformatics analysis and in silico designing of a novel multi-epitope peptide vaccine against Staphylococcus aureus. Infection, Genetics and Evolution, 48, 83–94. https://doi.org/10.1016/j.meegid.2016.12.010
  • Hess, B., Bekker, H., Berendsen, H., J., C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(sici)1096-987x(199709)18:12<1463::aid-jcc4>3.0.co;2-h
  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B. L., Grubmüller, H., & MacKerell, A. D. (2017). CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71–73. https://doi.org/10.1038/nmeth.4067
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Ichiye, T., & Karplus, M. (1991). Collective motions in proteins: A co-variance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins, 11(3), 205–217. https://doi.org/10.1002/prot.340110305
  • Ikai, A. (1980). Thermostability and aliphatic index of globular proteins. The Journal of Biochemistry, 88, 1895–1898. https://doi.org/10.1093/oxfordjournals.jbchem.a133168
  • Jain, P., Joshi, A., Akhtar, N., Krishnan, S., & Kaushik, V. (2021). An immunoinformatics study: designing multivalent T-cell epitope vaccine against canine circovirus. Journal, Genetic Engineering & Biotechnology, 19(1), 121–121. https://doi.org/10.1186/s43141-021-00220-4
  • Jespersen, M. C., Peters, B., Nielsen, M., & Marcatili, P. (2017). BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research, 45(W1), W24–W29. https://doi.org/10.1093/nar/gkx346
  • Jia, N., Ou, Y., Pejsak, Z., Zhang, Y., & Zhang, J. (2017). Roles of African Swine Fever virus structural proteins in viral infection. Journal of Veterinary Research, 61(2), 135–143. https://doi.org/10.1515/jvetres-2017-0017
  • Joshi, A., & Kaushik, V. (2021). Silico proteomic exploratory quest: Crafting T-cell epitope vaccine against Whipple’s Disease. International Journal of Peptide Research and Therapeutics, 27(1), 169–179. https://doi.org/10.1007/s10989-020-10077-9
  • Joshi, A., Pathak, D. C., Mannan, M. A.-U., & Kaushik, V. (2021). In-silico designing of epitope-based vaccine against the seven banded grouper nervous necrosis virus affecting fish species. Network Modeling and Analysis in Health Informatics and Bioinformatics, 10(1), 37–37. https://doi.org/10.1007/s13721-021-00315-5
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Kabra, A., Mukim, M., Uddin, K., Kabra, R., & Kukkar, R. (2020). African Swine Fever: An emerging viral disease in India – A review. Journal of Biological and Chemical Chronicles, 6(1), 10–18. https://doi.org/10.33980/jbcc.2020.v06i01.003
  • Kalra, K., Gorle, S., Cavallo, L., Oliva, R., & Chawla, M. (2020). Occurrence and stability of lone pair-π and OH-π interactions between water and nucleobases in functional RNAs. Nucleic Acids Research, 48(11), 5825–5838. https://doi.org/10.1093/nar/gkaa345
  • Karplus, M., & Kuriyan, J. (2005). Molecular dynamics and protein function. Proceedings of the National Academy of Sciences of the United States of America, 102(19), 6679–6685. https://doi.org/10.1073/pnas.0408930102
  • Kaushik, V., Jain, P., Akhtar, N., Joshi, A., Gupta, L. R., Grewal, R. K., Oliva, R., Shaikh, A. R., Cavallo, L., & Chawla, M. (2022b). Immunoinformatics-aided design and in vivo validation of a peptide-based multiepitope vaccine targeting canine circovirus. ACS Pharmacology & Translational Science, 5(8), 679–691. https://doi.org/10.1021/acsptsci.2c00130
  • Kaushik, V., Krishnan, S. G., Gupta, L. R., Kalra, U., Shaikh, A. R., Cavallo, L., & Chawla, M. (2022a). Immunoinformatics aided design and in-vivo validation of a cross-reactive peptide based multi-epitope vaccine targeting multiple serotypes of dengue virus. Frontiers in Immunology, 13(865180), 1-12. https://doi.org/10.3389/fimmu.2022.865180
  • Khim, K., Bang, Y. J., Puth, S., Choi, Y., Lee, Y. S., Jeong, K., Lee, S. E., & Rhee, J. H. (2021). Deimmunization of flagellin for repeated administration as a vaccine adjuvant. Npj Vaccines, 6(116), 1-14. https://doi.org/10.1038/s41541-021-00379-4
  • Lacasta, A., Ballester, M., Monteagudo, P. L., Rodríguez, J. M., Salas, M. L., Accensi, F., Pina-Pedrero, S., Bensaid, A., Argilaguet, J., López-Soria, S., Hutet, E., Le Potier, M. F., & Rodríguez, F. (2014). Expression library immunization can confer protection against lethal challenge with African swine fever virus. Journal of Virology, 88(22), 13322–13332. https://doi.org/10.1128/JVI.01893-14
  • Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477–486. https://doi.org/10.1007/bf00228148
  • Laskowski, R., Rullmann, J. A., Macarthur, M., Kaptein, R., & Thornton, J. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477-486. https://doi.org/10.1007/bf00228148
  • López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S., & Chacón, P. (2014). iMODS: Internal coordinates normal mode analysis server. Nucleic Acids Research, 42(Web Server issue), W271–W276. https://doi.org/10.1093/nar/gku339
  • López-Otín, C., Freije, J. M. P., Parra, F., Mendez, E., & Viñuela, E. (1990). Mapping and sequence of the gene coding for protein p72, the major capsid protein of African swine fever virus. Virology, 175(2), 477–484. https://doi.org/10.1016/0042-6822(90)90432-q
  • Machado, M. R., Barrera, E. E., Klein, F., Sóñora, M., Silva, S., & Pantano, S. (2019). The SIRAH 2.0 Force Field: Altius, Fortius, Citius. Journal of Chemical Theory and Computation, 15(4), 2719–2733. https://doi.org/10.1021/acs.jctc.9b00006
  • Mebus, C. A. (1988). Advances in Virus Research (pp. 251–269). Elsevier.
  • Mima, K. A., Katorkina, E. I., Katorkin, S. A., Tsybanov, S. Z., & Malogolovkin, A. S. (2020). In silico prediction of B- and T-cell epitopes in the CD2v protein of African swine fever virus (African swine fever virus, Asfivirus, Asfarviridae). Problems of Virology (Voprosy Virusologii), 65(2), 103–112. https://doi.org/10.36233/0507-4088-2020-65-2-103-112
  • Mirdita, M., Ovchinnikov, S., & Steinegger, M. (2021). ColabFold - Making protein folding accessible to all. Cold Spring Harbor Laboratory.
  • Moutaftsi, M., Peters, B., Pasquetto, V., Tscharke, D. C., Sidney, J., Bui, H.-H., Grey, H., & Sette, A. (2006). A consensus epitope prediction approach identifies the breadth of murine TCD8+-cell responses to vaccinia virus. Nature Biotechnology, 24(7), 817–819. https://doi.org/10.1038/nbt1215
  • Negahdaripour, M., Nezafat, N., Eslami, M., Ghoshoon, M. B., Shoolian, E., Najafipour, S., Morowvat, M. H., Dehshahri, A., Erfani, N., & Ghasemi, Y. (2018). Structural vaccinology considerations for in silico designing of a multi-epitope vaccine. Infection, Genetics and Evolution, 58, 96–109. https://doi.org/10.1016/j.meegid.2017.12.008
  • Neilan, J. G., Zsak, L., Lu, Z., Burrage, T. G., Kutish, G. F., & Rock, D. L. (2004). Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology, 319(2), 337–342. https://doi.org/10.1016/j.virol.2003.11.011
  • Netherton, C. L., & Wileman, T. E. (2013). African swine fever virus organelle rearrangements. Virus Research, 173(1), 76–86. https://doi.org/10.1016/j.virusres.2012.12.014
  • Nguyen, T. L., Lee, Y., & Kim, H. (2022). Immunogenic epitope-based vaccine prediction from surface glycoprotein of MERS-CoV by deploying immunoinformatics approach. International Journal of Peptide Research and Therapeutics, 28(77), 1-11. https://doi.org/10.1007/s10989-022-10382-5
  • O'Donnell, V., Holinka, L. G., Gladue, D. P., Sanford, B., Krug, P. W., Lu, X., Arzt, J., Reese, B., Carrillo, C., Risatti, G. R., & Borca, M. V. (2015a). African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. Journal of Virology, 89(11), 6048–6056. https://doi.org/10.1128/JVI.00554-15
  • O'Donnell, V., Holinka, L. G., Krug, P. W., Gladue, D. P., Carlson, J., Sanford, B., Alfano, M., Kramer, E., Lu, Z., Arzt, J., Reese, B., Carrillo, C., Risatti, G. R., & Borca, M. V. (2015b). African Swine Fever Virus Georgia 2007 with a deletion of virulence-associated gene 9GL (B119L), when administered at low doses, leads to virus attenuation in swine and induces an effective protection against homologous challenge. Journal of Virology, 89(16), 8556–8566. https://doi.org/10.1128/JVI.00969-15
  • Oliva, R., Shaikh, A. R., Petta, A., Vangone, A., & Cavallo, L. (2021). D936Y and other mutations in the fusion core of the SARS-CoV-2 spike protein heptad repeat 1: Frequency, geographical distribution, and structural effect. Molecules, 26(9), 2622. https://doi.org/10.3390/molecules26092622
  • Oyarzun, P., Ellis, J. J., Gonzalez-Galarza, F. F., Jones, A. R., Middleton, D., Boden, M., & Kobe, B. (2015). A bioinformatics tool for epitope-based vaccine design that accounts for human ethnic diversity: Application to emerging infectious diseases. Vaccine, 33(10), 1267–1273. https://doi.org/10.1016/j.vaccine.2015.01.040
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pereira, J., Simpkin, A. J., Hartmann, M. D., Rigden, D. J., Keegan, R. M., & Lupas, A. N. (2021). High-accuracy protein structure prediction in CASP14. Proteins, 89(12), 1687–1699. https://doi.org/10.1002/prot.26171
  • Reynisson, B., Alvarez, B., Paul, S., Peters, B., & Nielsen, M. (2020). NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Research, 48(W1), W449–W454. https://doi.org/10.1093/nar/gkaa379
  • Ribeiro, J. MAzevedo,., & J. A., R. (1961). La peste porcine Africaine au Portugal. Bulletin - Office International des épizooties, 55, 88–106.
  • Ros-Lucas, A., Correa-Fiz, F., Bosch-Camós, L., Rodriguez, F., & Alonso-Padilla, J. (2020). Computational analysis of African Swine Fever Virus protein space for the design of an epitope-based vaccine ensemble. Pathogens, 9(12), 1078. https://doi.org/10.3390/pathogens9121078
  • Sanchez-Trincado, J. L., Gomez-Perosanz, M., & Reche, P. A. (2017). Fundamentals and methods for T- and B-cell epitope prediction. Journal of Immunology Research, 2017, 1–14. https://doi.org/10.1155/2017/2680160
  • Sánchez-Vizcaíno, J. M., Mur, L., & Martínez-López, B. (2012). African Swine Fever: An epidemiological update. Transboundary and Emerging Diseases, 59, 27–35. https://doi.org/10.1111/j.1865-1682.2011.01293.x
  • Sbai, H., Mehta, A., & DeGroot, A. (2001). Use of T cell epitopes for vaccine development. Current Drug Targets. Infectious Disorders, 1(3), 303–313. https://doi.org/10.2174/1568005014605955
  • Schlake, T., Thess, A., Fotin-Mleczek, M., & Kallen, K.-J. (2012). Developing mRNA-vaccine technologies. RNA Biology, 9(11), 1319–1330. https://doi.org/10.4161/rna.22269
  • Sette, A., & Fikes, J. (2003). Epitope-based vaccines: An update on epitope identification, vaccine design and delivery. Current Opinion in Immunology, 15(4), 461–470. https://doi.org/10.1016/s0952-7915(03)00083-9
  • States, F. A. A. O. O. T. U. (2022). African Swine Fever (ASF), https://www.fao.org/ag/againfo/programmes/en/empres/ASF/index.html
  • Suhrbier, A. (1997). Multi-epitope DNA vaccines. Immunology and Cell Biology, 75(4), 402–408. https://doi.org/10.1038/icb.1997.63
  • Supervision, T. F. S. f. V. a. P. (2022). The Federal Service for Veterinary and Phytosanitary Supervision, http://www.fsvps.ru.
  • System, W. A. H. I. (2022). OIE-WAHIS - Outbreaks from the most recent events, https://wahis.oie.int/#/home.
  • Tulman, E. R., Delhon, G. A., Ku, B. K., & Rock, D. L. (2009). Lesser known large dsDNA viruses (pp. 43–87). Springer.
  • van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725. https://doi.org/10.1016/j.jmb.2015.09.014
  • Vangone, A., Spinelli, R., Scarano, V., Cavallo, L., & Oliva, R. (2011). COCOMAPS: A web application to analyze and visualize contacts at the interface of biomolecular complexes. Bioinformatics (Oxford, England), 27(20), 2915–2916. https://doi.org/10.1093/bioinformatics/btr484
  • Wang, W.-H., Lin, C.-Y., Chang Ishcol, M. R., Urbina, A. N., Assavalapsakul, W., Thitithanyanont, A., Lu, P.-L., Chen, Y.-H., & Wang, S.-F. (2019). Detection of African swine fever virus in pork products brought to Taiwan by travellers. Emerging Microbes & Infections, 8(1), 1000–1002. https://doi.org/10.1080/22221751.2019.1636615
  • Yonekura, K., Maki-Yonekura, S., & Namba, K. (2003). Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature, 424(6949), 643–650. https://doi.org/10.1038/nature01830
  • Yoo, D., Kim, H., Lee, J. Y., & Yoo, H. S. (2020). African swine fever: Etiology, epidemiological status in Korea, and perspective on control. Journal of Veterinary Science, 21(2), e38. https://doi.org/10.4142/jvs.2020.21.e38
  • Zhang, J., & Tao, A. (2015). Allergy bioinformatics (pp. 175–186). Springer.
  • Zsak, L., Onisk, D. V., Afonso, C. L., & Rock, D. L. (1993). Virulent African Swine Fever virus isolates are neutralized by swine immune serum and by monoclonal antibodies recognizing a 72-kDa viral protein. Virology, 196(2), 596–602. https://doi.org/10.1006/viro.1993.1515

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.