236
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Exploring the possibility of drug repurposing for cancer therapy targeting human lactate dehydrogenase A: a computational approach

, , , & ORCID Icon
Pages 9967-9976 | Received 16 Apr 2022, Accepted 12 Nov 2022, Published online: 28 Dec 2022

References

  • Agrawal, R., Jain, P., & Narayan Dikshit, S. (2012). Ligand-based pharmacophore detection, screening of potential gliptins and docking studies to get effective antidiabetic agents. Combinatorial Chemistry & High Throughput Screening, 15(10), 849–876. https://doi.org/10.2174/138620712803901090
  • Augoff, K., Hryniewicz-Jankowska, A., & Tabola, R. (2015). Lactate dehydrogenase 5: an old friend and a new hope in the war on cancer. Cancer Letters, 358(1), 1–7. https://doi.org/10.1016/j.canlet.2014.12.035
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, IN., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Biovia, D. S. (2021). [Discovery Studio Visualizer], [v21.1.0.20298] Dassault Systèmes.
  • Bitencourt-Ferreira, G., & de Azevedo, W. F. (2019). Molegro virtual docker for docking. Methods in Molecular Biology (Clifton, NJ), 2053, 149–167. https://doi.org/10.1007/978-1-4939-9752-7_10
  • Dang, C. V., & Semenza, G. L. (1999). Oncogenic alterations of metabolism. Trends in Biochemical Sciences, 24(2), 68–72. https://doi.org/10.1016/S0968-0004(98)01344-9
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dashty, M. (2013). A quick look at biochemistry: carbohydrate metabolism. Clinical Biochemistry, 46(15), 1339–1352. https://doi.org/10.1016/j.clinbiochem.2013.04.027
  • Dragovich, P. S., Fauber, B. P., Boggs, J., Chen, J., Corson, L. B., Ding, C. Z., Eigenbrot, C., Ge, H., Giannetti, A. M., Hunsaker, T., Labadie, S., Li, C., Liu, Y., Liu, Y., Ma, S., Malek, S., Peterson, D., Pitts, K. E., Purkey, H. E., … Zhou, A. (2014). Identification of substituted 3-hydroxy-2-mercaptocyclohex-2-enones as potent inhibitors of human lactate dehydrogenase. Bioorganic & Medicinal Chemistry Letters, 24(16), 3764–3771. https://doi.org/10.1016/j.bmcl.2014.06.076
  • Dragovich, P. S., Fauber, B. P., Corson, L. B., Ding, C. Z., Eigenbrot, C., Ge, H., Giannetti, A. M., Hunsaker, T., Labadie, S., Liu, Y., Malek, S., Pan, B., Peterson, D., Pitts, K., Purkey, H. E., Sideris, S., Ultsch, M., VanderPorten, E., Wei, B., … Zhang, X. (2013). Identification of substituted 2-thio-6-oxo-1,6-dihydropyrimidines as inhibitors of human lactate dehydrogenase. Bioorganic & Medicinal Chemistry Letters, 23(11), 3186–3194. https://doi.org/10.1016/j.bmcl.2013.04.001
  • Emami Nejad, A., Najafgholian, S., Rostami, A., Sistani, A., Shojaeifar, S., Esparvarinha, M., Nedaeinia, R., Haghjooy Javanmard, S., Taherian, M., Ahmadlou, M., Salehi, R., Sadeghi, B., & Manian, M. (2021). The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell International, 21(1), 1–26. https://doi.org/10.1186/s12935-020-01719-5
  • Fantin, V. R., St-Pierre, J., & Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 9(6), 425–434. https://doi.org/10.1016/j.ccr.2006.04.023
  • Farhana, A., & Lappin, S. L. (2021). Biochemistry, lactate dehydrogenase. StatPearls, https://www.ncbi.nlm.nih.gov/books/NBK557536/
  • Fauber, B. P., Dragovich, P. S., Chen, J., Corson, L. B., Ding, C. Z., Eigenbrot, C., Labadie, S., Malek, S., Peterson, D., Purkey, H. E., Robarge, K., Sideris, S., Ultsch, M., Wei, B., Yen, I., Yue, Q., & Zhou, A. (2014). Identification of 3,6-disubstituted dihydropyrones as inhibitors of human lactate dehydrogenase. Bioorganic & Medicinal Chemistry Letters, 24(24), 5683–5687. https://doi.org/10.1016/j.bmcl.2014.10.067
  • Feng, Y., Xiong, Y., Qiao, T., Li, X., Jia, L., & Han, Y. (2018). Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy. Cancer Medicine, 7(12), 6124–6136. https://doi.org/10.1002/cam4.1820
  • Granchi, C., Bertini, S., Macchia, M., & Minutolo, F. (2010). Inhibitors of lactate dehydrogenase isoforms and their therapeutic potentials. Current Medicinal Chemistry, 17(7), 672–697. https://doi.org/10.2174/092986710790416263
  • Heiden, M. G. V., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg Effect: The metabolic requirements of cell proliferation. Science (New York, NY), 324(5930), 1029–1033. https://doi.org/10.1126/science.1160809
  • Huang, J., & Mackerell, A. D. (2013). CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jurisic, V., Radenkovic, S., & Konjevic, G. (2015). The actual role of LDH as tumor marker, biochemical and clinical aspects. Advances in Experimental Medicine and Biology, 867, 115–124. https://doi.org/10.1007/978-94-017-7215-0_8
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2021). PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971
  • Koes, D. R., & Camacho, C. J. (2012). ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Research, 40(Web Server issue), W409–W414. https://doi.org/10.1093/nar/gks378
  • Kumari, R., Kumar, R., & Lynn, A., Open Source Drug Discovery Consortium. (2014). G-mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Le, A., Cooper, C. R., Gouw, A. M., Dinavahi, R., Maitra, A., Deck, L. M., Royer, R. E., Vander Jagt, D. L., Semenza, G. L., & Dang, C. V. (2010). Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 2037–2042. https://doi.org/10.1073/pnas.0914433107
  • Li, X. B., Gu, J. D., & Zhou, Q. H. (2015). Review of aerobic glycolysis and its key enzymes – new targets for lung cancer therapy. Thoracic Cancer, 6(1), 17–24. https://doi.org/10.1111/1759-7714.12148
  • Liberti, M. V., & Locasale, J. W. (2016). The Warburg effect: How does it benefit cancer cells? Trends in Biochemical Sciences, 41(3), 211–218. https://doi.org/10.1016/J.TIBS.2015.12.001
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Miao, P., Sheng, S., Sun, X., Liu, J., & Huang, G. (2013). Lactate dehydrogenase a in cancer: A promising target for diagnosis and therapy. IUBMB Life, 65(11), 904–910. https://doi.org/10.1002/iub.1216
  • Mishra, D., & Banerjee, D. (2019). Lactate dehydrogenases as metabolic links between tumor and stroma in the tumor microenvironment. Cancers, 11(6), 750. https://doi.org/10.3390/cancers11060750
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 1–14. https://doi.org/10.1186/1758-2946-3-33
  • Pucci, C., Martinelli, C., & Ciofani, G. (2019). Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience, 13, 961. https://doi.org/10.3332/ecancer.2019.961
  • Purkey, H. E., Robarge, K., Chen, J., Chen, Z., Corson, L. B., Ding, C. Z., DiPasquale, A. G., Dragovich, P. S., Eigenbrot, C., Evangelista, M., Fauber, B. P., Gao, Z., Ge, H., Hitz, A., Ho, Q., Labadie, S. S., Lai, K. W., Liu, W., Liu, Y., … Zhou, A. (2016). Cell active hydroxylactam inhibitors of human lactate dehydrogenase with oral bioavailability in mice. ACS Medicinal Chemistry Letters, 7(10), 896–901. https://doi.org/10.1021/acsmedchemlett.6B00190
  • Rani, R., & Kumar, V. (2016). Recent update on human lactate dehydrogenase enzyme 5 (hLDH5) inhibitors: A promising approach for cancer chemotherapy. Journal of Medicinal Chemistry, 59(2), 487–496. https://doi.org/10.1021/acs.jmedchem.5b00168
  • Schneidman-Duhovny, D., Dror, O., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2008). PharmaGist: a webserver for ligand-based pharmacophore detection. Nucleic Acids Research, 36(Web Server issue), W223–W228. https://doi.org/10.1093/nar/gkn187
  • Semenza, G. L., Jiang, B. H., Leung, S. W., Passantino, R., Concordet, J. P., Maire, P., & Giallongo, A. (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. The Journal of Biological Chemistry, 271(51), 32529–32537. https://doi.org/10.1074/jbc.271.51.32529
  • Sharma, M., Sharma, N., Muddassir, M., Rahman, Q. I., Dwivedi, U. N., & Akhtar, S. (2021b). Structure-based pharmacophore modeling, virtual screening and simulation studies for the identification of potent anticancerous phytochemical lead targeting cyclin-dependent kinase 2. Journal of Biomolecular Structure and Dynamics, 40(20), 9815-9832. https://doi.org/10.1080/07391102.2021.1936178
  • Sharma, M., Sharma, N., Saxena, G., & Akhtar, S. (2018). Insighting interaction patterns in 7-Acetylcholine via docking studies against CDK2 as anticancer therapeutic target. Biochemical and Cellular Archives, 18(2), 1483–1494. https://doi.org/10.2174/1389557519666190312165717
  • Thomsen, R., & Christensen, M. H. (2006). MolDock: A new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry, 49(11), 3315–3321. https://doi.org/10.1021/jm051197e
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vander Heiden, M. G. (2011). Targeting cancer metabolism: a therapeutic window opens. Nature Reviews. Drug Discovery, 10(9), 671–684. https://doi.org/10.1038/nrd3504
  • Ward, P. S., & Thompson, C. B. (2012). Metabolic reprogramming: A cancer hallmark even Warburg did not anticipate. Cancer Cell, 21(3), 297–308. https://doi.org/10.1016/j.ccr.2012.02.014
  • Zhao, Y., Liu, H., Riker, A. I., Fodstad, O., Ledoux, S. P., Wilson, G. L., & Tan, M. (2011). Emerging metabolic targets in cancer therapy. Frontiers in Bioscience (Landmark Edition), 16(5), 1844–1860. https://doi.org/10.2741/3826

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.