149
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Dynamic conformational states of apo, ATP and cabozantinib bound TAM kinases to differentiate active-inactive kinetic models

ORCID Icon & ORCID Icon
Pages 11394-11414 | Received 14 Sep 2022, Accepted 18 Dec 2022, Published online: 02 Jan 2023

References

  • Anandakrishnan, R., Aguilar, B., & Onufriev, A. V. (2012). H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Research, 40(Web Server issue), W537–541. https://doi.org/10.1093/nar/gks375
  • Bowman, G. R., & Pande, V. S. (2010). Protein folded states are kinetic hubs. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 10890–10895. https://doi.org/10.1073/pnas.1003962107
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science : a Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Cowan-Jacob, S. W., Fendrich, G., Manley, P. W., Jahnke, W., Fabbro, D., Liebetanz, J., & Meyer, T. (2005). The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Structure (London, England : 1993), 13(6), 861–871. https://doi.org/10.1016/j.str.2005.03.012
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Endicott, J. A., Noble, M. E., & Johnson, L. N. (2012). The structural basis for control of eukaryotic protein kinases. Annual Review of Biochemistry, (81), 587–613. https://doi.org/10.1146/annurev-biochem-052410-090317
  • Gajiwala, K. S., Grodsky, N., Bolanos, B., Feng, J., Ferre, R., Timofeevski, S., Xu, M., Murray, B. W., Johnson, T. W., & Stewart, A. (2017). The Axl kinase domain in complex with a macrocyclic inhibitor offers first structural insights into an active TAM receptor kinase. The Journal of Biological Chemistry, 292(38), 15705–15716. https://doi.org/10.1074/jbc.M116.771485
  • Gotz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized Born. Journal of Chemical Theory and Computation, 8(5), 1542–1555. https://doi.org/10.1021/ct200909j
  • Greuber, E. K., Smith-Pearson, P., Wang, J., & Pendergast, A. M. (2013). Role of ABL family kinases in cancer: from leukaemia to solid tumours. Nature Reviews. Cancer, 13(8), 559–571. https://doi.org/10.1038/nrc3563
  • Grüllich, C. (2014). Cabozantinib: A MET, RET, and VEGFR2 tyrosine kinase inhibitor. In U. M. Martens (Ed.), Small molecules in oncology (pp. 207–214). Springer.
  • Harrigan, M. P., Sultan, M. M., Hernandez, C. X., Husic, B. E., Eastman, P., Schwantes, C. R., Beauchamp, K. A., McGibbon, R. T., & Pande, V. S. (2017). MSMBuilder: Statistical models for biomolecular dynamics. Biophysical Journal, 112(1), 10–15. https://doi.org/10.1016/j.bpj.2016.10.042
  • Herum, K., Lunde, I., McCulloch, A., & Christensen, G. (2017). The soft- and hard-heartedness of cardiac fibroblasts: Mechanotransduction signaling pathways in fibrosis of the heart. Journal of Clinical Medicine, 6(5), 53. https://doi.org/10.3390/jcm6050053
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Hu, J., Ahuja, L. G., Meharena, H. S., Kannan, N., Kornev, A. P., Taylor, S. S., & Shaw, A. S. (2015). Kinase regulation by hydrophobic spine assembly in cancer. Molecular and Cellular Biology, 35(1), 264–276. https://doi.org/10.1128/MCB.00943-14
  • Husic, B. E., & Pande, V. S. (2018). Markov state models: From an art to a science. Journal of the American Chemical Society, 140(7), 2386–2396. https://doi.org/10.1021/jacs.7b12191
  • Johnson, L. N., Noble, M., & Owen, D. J. (1996). Active and inactive protein kinases: Structural basis for regulation. Cell, 85(2), 149–158. https://doi.org/10.1016/s0092-8674(00)81092-2
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
  • Kim, J., Ahuja, L. G., Chao, F. A., Xia, Y., McClendon, C. L., Kornev, A. P., Taylor, S. S., & Veglia, G. (2017). A dynamic hydrophobic core orchestrates allostery in protein kinases. Science Advances, 3(4), e1600663. https://doi.org/10.1126/sciadv.1600663
  • Kornev, A. P., Haste, N. M., Taylor, S. S., & Eyck, L. F. (2006). Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proceedings of the National Academy of Sciences of the United States of America, 103(47), 17783–17788. https://doi.org/10.1073/pnas.0607656103
  • Lacy, S., Nielsen, J., Yang, B., Miles, D., Nguyen, L., & Hutmacher, M. (2018). Population exposure-response analysis of cabozantinib efficacy and safety endpoints in patients with renal cell carcinoma. Cancer Chemotherapy and Pharmacology, 81(6), 1061–1070. https://doi.org/10.1007/s00280-018-3579-7
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Manning, G., Whyte, D. B., Martinez, R., Hunter, T., & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science (New York, N.Y.), 298(5600), 1912–1934. https://doi.org/10.1126/science.1075762
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. ), https://doi.org/10.1021/jp003020w
  • McGibbon, R. T., Beauchamp, K. A., Harrigan, M. P., Klein, C., Swails, J. M., Hernandez, C. X., Schwantes, C. R., Wang, L. P., Lane, T. J., & Pande, V. S. (2015). MDTraj: A modern open library for the analysis of molecular dynamics trajectories. Biophysical Journal, 109(8), 1528–1532. https://doi.org/10.1016/j.bpj.2015.08.015
  • Meagher, K. L., Redman, L. T., & Carlson, H. A. (2003). Development of polyphosphate parameters for use with the AMBER force field. Journal of Computational Chemistry, 24(9), 1016–1025. https://doi.org/10.1002/jcc.10262
  • Metzner, P., Schutte, C., & Vanden-Eijnden, E. (2009). Transition path theory for Markov jump processes. Multiscale Modeling & Simulation, 7(3), 1192–1219. https://doi.org/10.1137/070699500
  • Mohanty, S., Oruganty, K., Kwon, A., Byrne, D. P., Ferries, S., Ruan, Z., Hanold, L. E., Katiyar, S., Kennedy, E. J., Eyers, P. A., & Kannan, N. (2016). Hydrophobic core variations provide a structural framework for tyrosine kinase evolution and functional specialization. PLoS Genetics, 12(2), e1005885. https://doi.org/10.1371/journal.pgen.1005885
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Myers, K. V., Amend, S. R., & Pienta, K. J. (2019). Targeting Tyro3, Axl and MerTK (TAM receptors): Implications for macrophages in the tumor microenvironment. Molecular Cancer, 18(1), 94. https://doi.org/10.1186/s12943-019-1022-2
  • Naresh, G., & Guruprasad, L. (2021). Enhanced metastable state models of TAM kinase binding to cabozantinib explains the dynamic nature of receptor tyrosine kinases. Journal of Biomolecular Structure & Dynamics, 39(4), 1213–1235. https://doi.org/10.1080/07391102.2020.1730968
  • Noe, F., & Clementi, C. (2015). Kinetic distance and kinetic maps from molecular dynamics simulation. Journal of Chemical Theory and Computation, 11(10), 5002–5011. https://doi.org/10.1021/acs.jctc.5b00553
  • Pantano, F., Ribelli, G., Iuliani, M., Fioramonti, M., Leakos, M., Zoccoli, A., Santini, D., Muto, G., & Tonini, G. (2016). New molecular targets in metastatic prostate cancer. Journal of Cancer Therapy, 07(06), 388–401. https://doi.org/10.4236/jct.2016.76042
  • Parsons, S. J., & Parsons, J. T. (2004). Src family kinases, key regulators of signal transduction. Oncogene, 23(48), 7906–7909. https://doi.org/10.1038/sj.onc.1208160
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
  • Perez, F., & Granger, B. E. (2007). IPython: A system for interactive scientific computing. Computing in Science & Engineering, 9(3), 21–29. https://doi.org/10.1109/MCSE.2007.53
  • Perez-Hernandez, G., Paul, F., Giorgino, T., De Fabritiis, G., & Noe, F. (2013). Identification of slow molecular order parameters for Markov model construction. The Journal of Chemical Physics, 139(1), 015102. https://doi.org/10.1063/1.4811489
  • Prinz, J. H., Wu, H., Sarich, M., Keller, B., Senne, M., Held, M., Chodera, J. D., Schutte, C., & Noe, F. (2011). Markov models of molecular kinetics: Generation and validation. The Journal of Chemical Physics, 134(17), 174105. https://doi.org/10.1063/1.3565032
  • Qin, S., Li, A., Yi, M., Yu, S., Zhang, M., & Wu, K. (2019). Recent advances on anti-angiogenesis receptor tyrosine kinase inhibitors in cancer therapy. Journal of Hematology & Oncology, 12(1), 27. https://doi.org/10.1186/s13045-019-0718-5
  • Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(Web Server issue), W320–324. https://doi.org/10.1093/nar/gku316
  • Robinson, R. (2013). Confirming the importance of the R-spine: New insights into protein kinase regulation. PLoS Biology, 11(10), e1001681. https://doi.org/10.1371/journal.pbio.1001681
  • Roskoski, R. Jr. (2015). Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacological Research, 94, 9–25. https://doi.org/10.1016/j.phrs.2015.01.003
  • Salomon-Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Salomon-Ferrer, R., Gotz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. Journal of Chemical Theory and Computation, 9(9), 3878–3888. https://doi.org/10.1021/ct400314y
  • Salvalaglio, M., Tiwary, P., & Parrinello, M. (2014). Assessing the reliability of the dynamics reconstructed from metadynamics. Journal of Chemical Theory and Computation, 10(4), 1420–1425. https://doi.org/10.1021/ct500040r
  • Scherer, M. K., Trendelkamp-Schroer, B., Paul, F., Perez-Hernandez, G., Hoffmann, M., Plattner, N., Wehmeyer, C., Prinz, J. H., & Noe, F. (2015). PyEMMA 2: A software package for estimation, validation, and analysis of Markov models. Journal of Chemical Theory and Computation, 11(11), 5525–5542. https://doi.org/10.1021/acs.jctc.5b00743
  • Schwantes, C. R., & Pande, V. S. (2013). Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9. Journal of Chemical Theory and Computation, 9(4), 2000–2009. https://doi.org/10.1021/ct300878a
  • Shukla, D., Meng, Y., Roux, B., & Pande, V. S. (2014). Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nature Communications, 5(1), 1–11. https://doi.org/10.1038/ncomms4397
  • Skora, L., Mestan, J., Fabbro, D., Jahnke, W., & Grzesiek, S. (2013). NMR reveals the allosteric opening and closing of Abelson tyrosine kinase by ATP-site and myristoyl pocket inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 110(47), E4437–4445. https://doi.org/10.1073/pnas.1314712110
  • Sultan, M. M., Denny, R. A., Unwalla, R., Lovering, F., & Pande, V. S. (2017). Millisecond dynamics of BTK reveal kinome-wide conformational plasticity within the apo kinase domain. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-10697-0
  • Sultan, M. M., Kiss, G., & Pande, V. S. (2018). Towards simple kinetic models of functional dynamics for a kinase subfamily. Nature Chemistry, 10(9), 903–909. https://doi.org/10.1038/s41557-018-0077-9
  • Taylor, S. S., & Kornev, A. P. (2011). Protein kinases: evolution of dynamic regulatory proteins. Trends in Biochemical Sciences, 36(2), 65–77. https://doi.org/10.1016/j.tibs.2010.09.006
  • Turner, N. A., & Blythe, N. M. (2019). Cardiac Fibroblast p38 MAPK: A critical regulator of myocardial remodeling. Journal of Cardiovascular Development and Disease, 6(3), 27. https://doi.org/10.3390/jcdd6030027
  • Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, S. (2022). AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/nar/gkab1061
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Webb, B., & Sali, A. (2014). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 47, 5.6.1–6.32. https://doi.org/10.1002/0471250953.bi0506s47
  • Weinan, E., & Vanden-Eijnden, E. (2010). Transition-path theory and path-finding algorithms for the study of rare events. Annual Review of Physical Chemistry, 61, 391–420. https://doi.org/10.1146/annurev.physchem.040808.090412
  • Yang, Z., Lasker, K., Schneidman-Duhovny, D., Webb, B., Huang, C. C., Pettersen, E. F., Goddard, T. D., Meng, E. C., Sali, A., & Ferrin, T. E. (2012). UCSF Chimera, MODELLER, and IMP: An integrated modeling system. Journal of Structural Biology, 179(3), 269–278. https://doi.org/10.1016/j.jsb.2011.09.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.