232
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Design, synthesis, anti-acetylcholinesterase evaluation and molecular modelling studies of novel coumarin-chalcone hybrids

ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, , , & ORCID Icon show all
Pages 11450-11462 | Received 01 Aug 2022, Accepted 19 Dec 2022, Published online: 02 Jan 2023

References

  • Allen, M. P., & Tildesley, D. J. (2017). Computer simulation of liquids. Oxford University Press.
  • Anand, P., Singh, B., & Singh, N. (2012). A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorganic & Medicinal Chemistry, 20(3), 1175–1180. https://doi.org/10.1016/j.bmc.2011.12.042
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Baruah, P., Basumatary, G., Yesylevskyy, S. O., Aguan, K., Bez, G., & Mitra, S. (2019). Novel coumarin derivatives as potent acetylcholinesterase inhibitors: Insight into efficacy, mode and site of inhibition. Journal of Biomolecular Structure & Dynamics, 37(7), 1750–1765. https://doi.org/10.1080/07391102.2018.1465853
  • Bolognesi, M. L., Cavalli, A., Valgimigli, L., Bartolini, M., Rosini, M., Andrisano, V., Recanatini, M., & Melchiorre, C. (2007). Multi-target-directed drug design strategy: From a dual binding site acetylcholinesterase inhibitor to a trifunctional compound against Alzheimer’s disease. Journal of Medicinal Chemistry, 50(26), 6446–6449. https://doi.org/10.1021/jm701225u
  • Brown, R. C., Lockwood, A. H., & Sonawane, B. R. (2005). Neurodegenerative diseases: An overview of environmental risk factors. Environmental Health Perspectives, 113(9), 1250–1256. https://doi.org/10.1289/ehp.7567
  • Cardoso, S. H., Barreto, M. B., Lourenço, M. C., Henriques, M., Candéa, A. L., Kaiser, C. R., & de Souza, M. V. (2011). Antitubercular activity of new coumarins. Chemical Biology & Drug Design, 77(6), 489–493. https://doi.org/10.1111/j.1747-0285.2011.01120.x
  • Chander, S., Ashok, P., Zheng, Y.-T., Wang, P., Raja, K. S., Taneja, A., & Murugesan, S. (2016). Design, synthesis and in-vitro evaluation of novel tetrahydroquinoline carbamates as HIV-1 RT inhibitor and their antifungal activity. Bioorganic Chemistry, 64, 66–73. https://doi.org/10.1016/j.bioorg.2015.12.005
  • Cheung, J., Rudolph, M. J., Burshteyn, F., Cassidy, M. S., Gary, E. N., Love, J., Franklin, M. C., & Height, J. J. (2012). Structures of human acetylcholinesterase in complex with pharmacologically important ligands. Journal of Medicinal Chemistry, 55(22), 10282–10286. https://doi.org/10.1021/jm300871x
  • Cimler, R., Maresova, P., Kuhnova, J., & Kuca, K. (2019). Predictions of Alzheimer’s disease treatment and care costs in European countries. PloS One, 14(1), e0210958. https://doi.org/10.1371/journal.pone.0210958
  • DeLano, W. L., & Bromberg, S. (2004). PyMOL user’s guide. DeLano Scientific LLC, 629p.
  • Elkolli, M., Chafai, N., Chafaa, S., Kadi, I., Bensouici, C., & Hellal, A. (2022). New phosphinic and phosphonic acids: Synthesis, antidiabetic, anti-Alzheimer, antioxidant activity, DFT study and SARS-CoV-2 inhibition. Journal of Molecular Structure, 1268(2022), 133701. https://doi.org/10.1016/j.molstruc.2022.133701
  • Ellman, G. L., Courtney, K. D., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Fallarero, A., Oinonen, P., Gupta, S., Blom, P., Galkin, A., Mohan, C. G., & Vuorela, P. M. (2008). Inhibition of acetylcholinesterase by coumarins: The case of coumarin 106. Pharmacological Research, 58(3-4), 215–221. https://doi.org/10.1016/j.phrs.2008.08.001
  • Fujikawa, F., Hirai, K., Hirayama, T., Nanaumi, A., Umemoto, T., Kawamura, M., Nagami, K. A. Y. A., Nakasone, K., Kaji, M., Kuroiwa, T., Naito, M., Tsukuma, S., & Mabuchi, N. (1969). Studies on chemotherapeutics for Mycobacterium tuberculosis. XXIV. Synthesis and antibacterial activity of Mycobacterium tuberculosis of 3-methoxy-2-phenoxybenzaldehyde, 3-methoxy-4-(3-methoxyphenoxy) benzaldehyde and 3-methoxy-4-(4-methoxyphenoxy) benzaldehyde derivatives. Yakugaku Zasshi, 89(9), 1266–1271. https://doi.org/10.1248/yakushi1947.89.9_1266
  • Gomha, S. M., Abdel-Aziz, H. M., & El-Reedy, A. A. M. (2018). Facile synthesis of Pyrazolo[3,4-c]pyrazoles bearing coumarine ring as anticancer agents. Journal of Heterocyclic Chemistry, 55(8), 1960–1965. https://doi.org/10.1002/jhet.3235
  • Goyal, D., Kaur, A., & Goyal, B. (2018). Benzofuran and indole: Promising scaffolds for drug development in Alzheimer’s disease. ChemMedChem. 13(13), 1275–1299. https://doi.org/10.1002/cmdc.201800156
  • Hadjipavlou-Litina, D., Litinas, K., & Kontogiorgis, C. (2007). The anti-inflammatory effect of coumarin and its derivatives. Anti-Inflammatory & anti-Allergy Agents in Medicinal Chemistry, 6(4), 293–306. https://doi.org/10.2174/187152307783219989
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
  • Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science (New York, N.Y.), 297(5580), 353–356. https://doi.org/10.1126/science.1072994
  • Hasan, A. H., Amran, S. I., Hussain, F. H. S., Jaff, B. A., & Jamalis, J. (2019). Molecular docking and recent advances in the design and development of cholinesterase inhibitor scaffolds: Coumarin hybrids. ChemistrySelect, 4(48), 14140–14156. https://doi.org/10.1002/slct.201903607
  • Hasan, A. H., Hussen, N. H., Shakya, S., Jamalis, J., Pratama, M. R. F., Chander, S., Kharkwal, H., & Murugesan, S. (2022). In silico discovery of multi-targeting inhibitors for the COVID-19 treatment by molecular docking, molecular dynamics simulation studies, and ADMET predictions. Structural Chemistry, 33(5), 1645–1665. https://doi.org/10.1007/s11224-022-01996-y
  • Hasan, A. H., Murugesan, S., Amran, S. I., Chander, S., Alanazi, M. M., Hadda, T. B., Shakya, S., Pratama, M. R. F., Das, B., Biswas, S., & Jamalis, J. (2022). Novel thiophene Chalcones-Coumarin as acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, molecular docking, ADMET prediction and molecular dynamics simulation. Bioorganic Chemistry, 119, 105572. https://doi.org/10.1016/j.bioorg.2021.105572
  • Hoerr, R., & Noeldner, M. (2002). Ensaculin (KA-672. HCl): A multitransmitter approach to dementia treatment. CNS Drug Reviews, 8(2), 143–158. https://doi.org/10.1111/j.1527-3458.2002.tb00220.x
  • Hu, Y., Shen, Y., Wu, X., Tu, X., & Wang, G.-X. (2018). Synthesis and biological evaluation of coumarin derivatives containing imidazole skeleton as potential antibacterial agents. European Journal of Medicinal Chemistry, 143, 958–969. https://doi.org/10.1016/j.ejmech.2017.11.100
  • Huang, X. Y., Shan, Z. J., Zhai, H. L., Su, L., & Zhang, X. Y. (2011). Study on the anticancer activity of coumarin derivatives by molecular modeling. Chemical Biology & Drug Design, 78(4), 651–658. https://doi.org/10.1111/j.1747-0285.2011.01195.x
  • Huang, L., Yuan, X., Yu, D., Lee, K., & Chen, C. H. (2005). Mechanism of action and resistant profile of anti-HIV-1 coumarin derivatives. Virology, 332(2), 623–628. https://doi.org/10.1016/j.virol.2004.11.033
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hussen, N. H., Hasan, A. H., Jamalis, J., Shakya, S., Chander, S., Kharkwal, H., Murugesan, S., Ajit Bastikar, V., & Pyarelal Gupta, P. (2022). Potential inhibitory activity of phytoconstituents against black fungus: In silico ADMET, molecular docking and MD simulation studies. Computational Toxicology (Amsterdam, Netherlands), 24, 100247. https://doi.org/10.1016/j.comtox.2022.100247
  • Hwu, J. R., Singha, R., Hong, S. C., Chang, Y. H., Das, A. R., Vliegen, I., Clercq, E. D., & Neyts, J. (2008). Synthesis of new benzimidazole–coumarin conjugates as anti-hepatitis C virus agents. Antiviral Research, 77(2), 157–162. https://doi.org/10.1016/j.antiviral.2007.09.003
  • Ibrar, A., Zaib, S., Jabeen, F., Iqbal, J., & Saeed, A. (2016). Unraveling the alkaline phosphatase inhibition, anticancer, and antileishmanial potential of coumarin–triazolothiadiazine hybrids: Design, synthesis, and molecular docking analysis. Archiv Der Pharmazie, 349(7), 553–565. https://doi.org/10.1002/ardp.201500392
  • Ibrar, A., Zaib, S., Khan, I., Jabeen, F., Iqbal, J., & Saeed, A. (2015). Facile and expedient access to bis-coumarin–iminothiazole hybrids by molecular hybridization approach: Synthesis, molecular modelling and assessment of alkaline phosphatase inhibition, anticancer and antileishmanial potential. RSC Advances, 5(109), 89919–89931. https://doi.org/10.1039/C5RA14900B
  • Islam, M. M., Rohman, M. A., Gurung, A. B., Bhattacharjee, A., Aguan, K., & Mitra, S. (2018). Correlation of cholinergic drug induced quenching of acetylcholinesterase bound thioflavin-T fluorescence with their inhibition activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 189, 250–257. https://doi.org/10.1016/j.saa.2017.08.009
  • Jacquot, Y., Laïos, I., Cleeren, A., Nonclercq, D., Bermont, L., Refouvelet, B., Boubekeur, K., Xicluna, A., Leclercq, G., & Laurent, G. (2007). Synthesis, structure, and estrogenic activity of 4-amino-3-(2-methylbenzyl)coumarins on human breast carcinoma cells. Bioorganic & Medicinal Chemistry, 15(6), 2269–2282. https://doi.org/10.1016/j.bmc.2007.01.025
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kalepu, S., & Nekkanti, V. (2015). Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharmaceutica Sinica. B, 5(5), 442–453. https://doi.org/10.1016/j.apsb.2015.07.003
  • Katalinić, M., Rusak, G., Domaćinović Barović, J., Šinko, G., Jelić, D., Antolović, R., & Kovarik, Z. (2010). Structural aspects of flavonoids as inhibitors of human butyrylcholinesterase. European Journal of Medicinal Chemistry, 45(1), 186–192. https://doi.org/10.1016/j.ejmech.2009.09.041
  • Kawsar, S., Hosen, M. A., Chowdhury, T. S., Rana, K. M., Fujii, Y., & Ozeki, Y. (2021). Thermochemical, PASS, molecular docking, drug-likeness and in silico ADMET prediction of cytidine derivatives against HIV-1 reverse transcriptase. Revista de Chimie, 72(3), 159–178. https://doi.org/10.37358/RC.21.3.8446
  • Khan, M. D., Shakya, S., Vu, H. H. T., Habte, L., & Ahn, J. W. (2021). Low concentrated phosphorus sorption in aqueous medium on aragonite synthesized by carbonation of seashells: Optimization, kinetics, and mechanism study. Journal of Environmental Management, 280, 111652. https://doi.org/10.1016/j.jenvman.2020.111652
  • Khodair, A. I., Alsafi, M. A., & Nafie, M. S. (2019). Synthesis, molecular modeling and anti-cancer evaluation of a series of quinazoline derivatives. Carbohydrate Research, 486(2019), 107832. https://doi.org/10.1016/j.carres.2019.107832
  • Kontogiorgis, C., Detsi, A., & Hadjipavlou-Litina, D. (2012). Coumarin-based drugs: A patent review (2008 – present). Expert Opinion on Therapeutic Patents, 22(4), 437–454. https://doi.org/10.1517/13543776.2012.678835
  • Kostova, I., Bhatia, S., Grigorov, P., Balkansky, S., Parmar, V. S., Prasad, A. K., & Saso, L. (2011). Coumarins as antioxidants. Current Medicinal Chemistry, 18(25), 3929–3951. https://doi.org/10.2174/092986711803414395
  • Kufareva, I., & Abagyan, R. (2012). Methods of protein structure comparison. Methods in Molecular Biology (Clifton, N.J.), 857, 231–257. https://doi.org/10.1007/978-1-61779-588-6_10
  • Kumar, R., Saha, A., & Saha, D. (2012). A new antifungal coumarin from Clausena excavata. Fitoterapia, 83(1), 230–233. https://doi.org/10.1016/j.fitote.2011.11.003
  • Lee, S. K., Achieng, E., Maddox, C., Chen, S. C., Iuvone, P. M., & Fukuhara, C. (2011). Extracellular low pH affects circadian rhythm expression in human primary fibroblasts. Biochemical and Biophysical Research Communications, 416(3-4), 337–342. https://doi.org/10.1016/j.bbrc.2011.11.037
  • Leonetti, F., Favia, A., Rao, A., Aliano, R., Paluszcak, A., Hartmann, R. W., & Carotti, A. (2004). Design, synthesis, and 3D QSAR of novel potent and selective aromatase inhibitors. Journal of Medicinal Chemistry, 47(27), 6792–6803. https://doi.org/10.1021/jm049535j
  • Liu, H-r., Liu, X-j., Fan, H-q., Tang, J-j., Gao, X-h., & Liu, W.-K. (2014). Design, synthesis and pharmacological evaluation of chalcone derivatives as acetylcholinesterase inhibitors. Bioorganic & Medicinal Chemistry, 22(21), 6124–6133. https://doi.org/10.1016/j.bmc.2014.08.033
  • Liu, H., Liu, L., Gao, X., Liu, Y., Xu, W., He, W., Jiang, H., Tang, J., Fan, H., & Xia, X. (2017). Novel ferulic amide derivatives with tertiary amine side chain as acetylcholinesterase and butyrylcholinesterase inhibitors: The influence of carbon spacer length, alkylamine and aromatic group. European Journal of Medicinal Chemistry, 126, 810–822. https://doi.org/10.1016/j.ejmech.2016.12.003
  • Luscombe, N. M., Laskowski, R. A., & Thornton, J. M. (2001). Amino acid–base interactions: A three-dimensional analysis of protein–DNA interactions at an atomic level. Nucleic Acids Research, 29(13), 2860–2874. https://doi.org/10.1093/nar/29.13.2860
  • Marzouk, A. A., Abdel-Aziz, S. A., Abdelrahman, K. S., Wanas, A. S., Gouda, A. M., Youssif, B. G. M., & Abdel-Aziz, M. (2020). Design and synthesis of new 1,6-dihydropyrimidin-2-thio derivatives targeting VEGFR-2: Molecular docking and antiproliferative evaluation. Bioorganic Chemistry, 102(2020), 104090. https://doi.org/10.1016/j.bioorg.2020.104090
  • Mathew, B., Mathew, G. E., Uçar, G., Baysal, I., Suresh, J., Mathew, S., Haridas, A., & Jayaprakash, V. (2016). Potent and selective monoamine oxidase‐B inhibitory activity: Fluoro‐vs. trifluoromethyl‐4‐hydroxylated chalcone derivatives. Chemistry & Biodiversity, 13(8), 1046–1052. https://doi.org/10.1002/cbdv.201500367
  • McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Kawas, C. H., Klunk, W. E., Koroshetz, W. J., Manly, J. J., Mayeux, R., Mohs, R. C., Morris, J. C., Rossor, M. N., Scheltens, P., Carrillo, M. C., Thies, B., Weintraub, S., & Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 7(3), 263–269. https://doi.org/10.1016/j.jalz.2011.03.005
  • Melagraki, G., Afantitis, A., Igglessi-Markopoulou, O., Detsi, A., Koufaki, M., Kontogiorgis, C., & Hadjipavlou-Litina, D. J. (2009). Synthesis and evaluation of the antioxidant and anti-inflammatory activity of novel coumarin-3-aminoamides and their alpha-lipoic acid adducts. European Journal of Medicinal Chemistry, 44(7), 3020–3026. https://doi.org/10.1016/j.ejmech.2008.12.027
  • Minhas, R., Sandhu, S., Bansal, Y., & Bansal, G. (2017). Benzoxazole-coumarin derivatives: Potential candidates for development of safer anti-inflammatory drugs. Der Chemica Sinica, 8(1), 146–157. https://doi.org/10.1016/j.ejmech.2008.12.027
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14 < 1639::AID-JCC10 > 3.0.CO;2-B
  • NA. (2015). 2015 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 11(3), 332–384. https://doi.org/10.1016/j.jalz.2015.02.003
  • NA. (2019) 2019 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 15(3), 321–387. https://doi.org/10.1016/j.jalz.2019.01.010
  • Nafie, M. S., Tantawy, M. A., & Elmgeed, G. A. (2019). Screening of different drug design tools to predict the mode of action of steroidal derivatives as anti-cancer agents. Steroids, 152(2019), 108485. https://doi.org/10.1016/j.steroids.2019.108485
  • Nam, S. O., Park, D. H., Lee, Y. H., Ryu, J. H., & Lee, Y. S. (2014). Synthesis of aminoalkyl-substituted coumarin derivatives as acetylcholinesterase inhibitors. Bioorganic & Medicinal Chemistry, 22(4), 1262–1267. https://doi.org/10.1016/j.bmc.2014.01.010
  • Nepali, K., Lee, H.-Y., & Liou, J.-P. (2019). Nitro-group-containing drugs. Journal of Medicinal Chemistry, 62(6), 2851–2893. https://doi.org/10.1021/acs.jmedchem.8b00147
  • Patterson, C. (2018). World Alzheimer report 2018: The state of the art of dementia research: New frontiers. Alzheimer’s Disease International (ADI). pp. 32–36.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Picciotto, M. R., Higley, M. J., & Mineur, Y. S. (2012). Acetylcholine as a neuromodulator: Cholinergic signaling shapes nervous system function and behavior. Neuron, 76(1), 116–129. https://doi.org/10.1016/j.neuron.2012.08.036
  • Poli, G., Martinelli, A., & Tuccinardi, T. (2016). Reliability analysis and optimization of the consensus docking approach for the development of virtual screening studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(sup2), 167–173. https://doi.org/10.1080/14756366.2016.1193736
  • Prasanna, S., & Doerksen, R. J. (2009). Topological polar surface area: A useful descriptor in 2D-QSAR. Current Medicinal Chemistry, 16(1), 21–41. https://doi.org/10.2174/092986709787002817
  • Salih, R. H. H., Hasan, A. H., Hussein, A. J., Samad, M. K., Shakya, S., Jamalis, J., Hawaiz, F. E., & Pratama, M. R. F. (2022). One-pot synthesis, molecular docking, ADMET, and DFT studies of novel pyrazolines as promising SARS-CoV-2 main protease inhibitors. Research on Chemical Intermediates, 48(11), 4729–4751. https://doi.org/10.1007/s11164-022-04831-5
  • Saeed, A., Zaib, S., Ashraf, S., Iftikhar, J., Muddassar, M., Zhang, K. Y. J., & Iqbal, J. (2015). Synthesis, cholinesterase inhibition and molecular modelling studies of coumarin linked thiourea derivatives. Bioorganic Chemistry, 63, 58–63. https://doi.org/10.1016/j.bioorg.2015.09.009
  • Şahin, Ö., Özmen Özdemir, Ü., Seferoğlu, N., Adem, Ş., & Seferoğlu, Z. (2022). Synthesis, characterization, molecular docking and in vitro screening of new metal complexes with coumarin Schiff base as anticholine esterase and antipancreatic cholesterol esterase agents. Journal of Biomolecular Structure & Dynamics, 40(10), 4460–4474. https://doi.org/10.1080/07391102.2020.1858163
  • Sameem, B., Saeedi, M., Mahdavi, M., Nadri, H., Moghadam, F. H., Edraki, N., Khan, M. I., & Amini, M. (2017). Synthesis, docking study and neuroprotective effects of some novel pyrano[3,2-c]chromene derivatives bearing morpholine/phenylpiperazine moiety. Bioorganic & Medicinal Chemistry, 25(15), 3980–3988. https://doi.org/10.1016/j.bmc.2017.05.043
  • Saravanan, K., Karthikeyan, S., Sugarthi, S., & Stephen, A. D. (2021). Binding studies of known molecules with acetylcholinesterase and bovine serum albumin: A comparative view. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 259, 119856. https://doi.org/10.1016/j.saa.2021.119856
  • Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug solubility: Importance and enhancement techniques. ISRN Pharmaceutics, 2012, 195727. https://doi.org/10.5402/2012/195727
  • Scarpini, E., Scheltens, P., & Feldman, H. (2003). Treatment of Alzheimer’s disease: Current status and new perspectives. The Lancet. Neurology, 2(9), 539–547. https://doi.org/10.1016/S1474-4422(03)00502-7
  • Sivakumar, M., Saravanan, K., Saravanan, V., Sugarthi, S., Kumar, S. M., Alhaji Isa, M., Rajakumar, P., & Aravindhan, S. (2020). Discovery of new potential triplet acting inhibitor for Alzheimer’s disease via X-ray crystallography, molecular docking and molecular dynamics. Journal of Biomolecular Structure & Dynamics, 38(7), 1903–1917. https://doi.org/10.1080/07391102.2019.1620128
  • Tasso, B., Catto, M., Nicolotti, O., Novelli, F., Tonelli, M., Giangreco, I., Pisani, L., Sparatore, A., Boido, V., Carotti, A., & Sparatore, F. (2011). Quinolizidinyl derivatives of bi-and tricyclic systems as potent inhibitors of acetyl-and butyrylcholinesterase with potential in Alzheimer’s disease. European Journal of Medicinal Chemistry, 46(6), 2170–2184. https://doi.org/10.1016/j.ejmech.2011.02.071
  • Tran, T.-D., Nguyen, T.-C.-V., Nguyen, N.-S., Nguyen, D.-M., Nguyen, T.-T.-H., Le, M.-T., & Thai, K.-M. (2016). Synthesis of novel chalcones as acetylcholinesterase inhibitors. Applied Sciences, 6(7), 198. https://doi.org/10.3390/app6070198
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Uriarte-Pueyo, I., & Calvo, M. I. (2011). Flavonoids as acetylcholinesterase inhibitors. Current Medicinal Chemistry, 18(34), 5289–5302. https://doi.org/10.2174/092986711798184325
  • Uttarkar, A., Kishore, A. P., Srinivas, S. M., Rangappa, S., Kusanur, R., & Niranjan, V. (2022). Coumarin derivative as a potent drug candidate against triple negative breast cancer targeting the frizzled receptor of wingless-related integration site signaling pathway. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2021.2022536
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., & Vorobyov, I. (2010). CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields. Journal of Computational Chemistry. 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Vasconcelos, J. F., Teixeira, M. M., Barbosa-Filho, J. M., Agra, M. F., Nunes, X. P., Giulietti, A. M., Ribeiro-dos-Santos, R., & Soares, M. B. (2009). Effects of umbelliferone in a murine model of allergic airway inflammation. European Journal of Pharmacology, 609(1-3), 126–131. https://doi.org/10.1016/j.ejphar.2009.03.027
  • Vilar, S., Chakrabarti, M., & Costanzi, S. (2010). Prediction of passive blood–brain partitioning: Straightforward and effective classification models based on in silico derived physicochemical descriptors. Journal of Molecular Graphics & Modelling, 28(8), 899–903. https://doi.org/10.1016/j.jmgm.2010.03.010
  • Wade, R. C., & Goodford, P. J. (1989). The role of hydrogen-bonds in drug binding. Progress in Clinical and Biological Research, 289, 433–444.
  • Wang, L., Wang, Y., Tian, Y., Shang, J., Sun, X., Chen, H., Wang, H., & Tan, W. (2017). Design, synthesis, biological evaluation, and molecular modeling studies of chalcone-rivastigmine hybrids as cholinesterase inhibitors. Bioorganic & Medicinal Chemistry, 25(1), 360–371. https://doi.org/10.1016/j.bmc.2016.11.002
  • Wu, S., & Zhang, Y. (2008). A comprehensive assessment of sequence-based and template-based methods for protein contact prediction. Bioinformatics (Oxford, England), 24(7), 924–931. https://doi.org/10.1093/bioinformatics/btn069
  • Yang, Z., Zhang, D., Ren, J., Yang, M., & Li, S. (2012). Acetylcholinesterase inhibitory activity of the total alkaloid from traditional Chinese herbal medicine for treating Alzheimer’s disease. Medicinal Chemistry Research, 21(6), 734–738. https://doi.org/10.1007/s00044-011-9582-8
  • Yu, W., He, X., Vanommeslaeghe, K., & MacKerell, A. D. Jr. (2012). Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. Journal of Computational Chemistry, 33(31), 2451–2468. https://doi.org/10.1002/jcc.23067
  • Zaout, S., Chafaa, S., Hellal, A., Boukhemis, O., Khattabi, L., Merazig, H., Chafai, N., Bensouici, C., & Bendjeddou, L. (2021). Hydroxyphenylamine phosphonate derivatives: Synthesis, X-ray crystallographic analysis, and evaluation of theirs anti-Alzheimer effects and antioxidant activities. Journal of Molecular Structure, 1225, 129121. https://doi.org/10.1016/j.molstruc.2020.129121
  • Zhang, Y.-M., Lu, Y.-J., & Rock, C. O. (2004). The reductase steps of the type II fatty acid synthase as antimicrobial targets. Lipids, 39(11), 1055–1060. https://doi.org/10.1007/s11745-004-1330-3
  • Zhang, X., Rakesh, K., Bukhari, S., Balakrishna, M., Manukumar, H., & Qin, H.-L. (2018). Multi-targetable chalcone analogs to treat deadly Alzheimer’s disease: Current view and upcoming advice. Bioorganic Chemistry, 80(2018), 86–93. https://doi.org/10.1016/j.bioorg.2018.06.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.