110
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Design of a dual-function agent by fusing a designed anti-VEGF-A binder and CPG-2 enzyme

, , , , , & show all
Pages 11463-11470 | Received 29 Jun 2022, Accepted 19 Dec 2022, Published online: 11 Jan 2023

References

  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10037–10041. https://doi.org/10.1073/pnas.181342398
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492
  • Bray, F., Laversanne, M., Weiderpass, E., & Soerjomataram, I. (2021). The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 127(16), 3029–3030. https://doi.org/10.1002/cncr.33587
  • Bredenberg, J. H., Russo, C., & Fenley, M. O. (2008). Salt-mediated electrostatics in the association of TATA binding proteins to DNA: A combined molecular mechanics/Poisson-Boltzmann study. Biophysical Journal, 94(12), 4634–4645. https://doi.org/10.1529/biophysj.107.125609
  • Chevalier, A., Silva, D.-A., Rocklin, G. J., Hicks, D. R., Vergara, R., Murapa, P., Bernard, S. M., Zhang, L., Lam, K.-H., Yao, G., Bahl, C. D., Miyashita, S.-I., Goreshnik, I., Fuller, J. T., Koday, M. T., Jenkins, C. M., Colvin, T., Carter, L., Bohn, A., … Baker, D. (2017). Massively parallel de novo protein design for targeted therapeutics. Nature, 550(7674), 74–79. https://doi.org/10.1038/nature23912
  • Darden, T., York, D., & Pedersen, L. (1993) Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089. accessed 2022 Nov 5https://aip.scitation.org/doi/abs/10.1063/1.464397?casa_token=kyv-IDZQJPMAAAAA:r2MBYfSsmRjaQ-VOU2j9lg64HQ69NPe-zp_9uzJdnoO9HtQuEm1EBndHqk9APwAPRWoxc-1A-eqTHQ
  • Deng, L., Zhang, Q. C., Chen, Z., Meng, Y., Guan, J., & Zhou, S. (2014). PredHS: A web server for predicting protein-protein interaction hot spots by using structural neighborhood properties. Nucleic Acids Research, 42, W290–295. https://doi.org/10.1093/nar/gku437
  • Etemadi, A., Moradi, H. R., Mohammadian, F., Karimi-Jafari, M. H., Negahdari, B., Asgari, Y., & Mazloomi, M. (2022). Binder design for targeting SARS-CoV-2 spike protein: An in silico perspective. Gene Reports, 26, 101452. https://doi.org/10.1016/j.genrep.2021.101452
  • Fleishman, S. J., Whitehead, T. A., Ekiert, D. C., Dreyfus, C., Corn, J. E., Strauch, E.-M., Wilson, I. A., & Baker, D. (2011). Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science (New York, NY), 332(6031), 816–821. https://doi.org/10.1126/science.1202617
  • Fujii, T., Hirakata, T., Kurozumi, S., Tokuda, S., Nakazawa, Y., Obayashi, S., Yajima, R., Oyama, T., & Shirabe, K. (2020). VEGF-A is associated with the degree of TILs and PD-L1 expression in primary breast cancer. In Vivo (Athens, Greece), 34(5), 2641–2646. https://doi.org/10.21873/invivo.12082
  • Fujii, T., Yonemitsu, Y., Onimaru, M., Inoue, M., Hasegawa, M., Kuwano, H., & Sueishi, K. (2008). VEGF function for upregulation of endogenous PlGF expression during FGF-2-mediated therapeutic angiogenesis. Atherosclerosis, 200(1), 51–57. https://doi.org/10.1016/j.atherosclerosis.2007.12.012
  • Fujii, T., Yonemitsu, Y., Onimaru, M., Tanii, M., Nakano, T., Egashira, K., Takehara, T., Inoue, M., Hasegawa, M., Kuwano, H., & Sueishi, K. (2006). Nonendothelial mesenchymal cell-derived MCP-1 is required for FGF-2-mediated therapeutic neovascularization: Critical role of the inflammatory/arteriogenic pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(11), 2483–2489. https://doi.org/10.1161/01.ATV.0000244684.23499.bf
  • Gao, F., & Yang, C. (2020). Anti-VEGF/VEGFR2 monoclonal antibodies and their combinations with PD-1/PD-L1 inhibitors in clinic. Current Cancer Drug Targets, 20(1), 3–18. https://doi.org/10.2174/1568009619666191114110359
  • Gersten, O., & Wilmoth, J. R. (2002). The cancer transition in Japan since 1951. Demographic Research, 7(5), 271–306. https://doi.org/10.4054/DemRes.2002.7.5
  • Hashmi, M. A., Malik, A., Arsalan, A., Khan, M. A., & Younus, H. (2021). Elucidation of kinetic and structural properties of eye lens ζ-crystallin: An in vitro and in silico approach. Journal of Biomolecular Structure and Dynamics, 4, 1–15. https://doi.org/10.1080/07391102.2021.2017351
  • Hegde, P. S., Wallin, J. J., & Mancao, C. (2018). Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. Seminars in Cancer Biology, 52(Pt 2), 117–124. https://doi.org/10.1016/j.semcancer.2017.12.002
  • Jeyaharan, D., Aston, P., Garcia-Perez, A., Schouten, J., Davis, P., & Dixon, A. M. (2016). Soluble expression, purification and functional characterisation of carboxypeptidase G2 and its individual domains. Protein Expression and Purification, 127, 44–52. https://doi.org/10.1016/j.pep.2016.06.015
  • Kozakov, D., Grove, L. E., Hall, D. R., Bohnuud, T., Mottarella, S. E., Luo, L., Xia, B., Beglov, D., & Vajda, S. (2015). The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. 10, 733–755. [accessed 2022 Nov 5]. https://pubmed.ncbi.nlm.nih.gov/25855957/
  • Lai, Y. S., Wahyuningtyas, R., Aui, S. P., & Chang, K. T. (2019). Autocrine VEGF signalling on M2 macrophages regulates PD-L1 expression for immunomodulation of T cells. Journal of Cellular and Molecular Medicine, 23(2), 1257–1267. https://doi.org/10.1111/jcmm.14027
  • Lise, S., Buchan, D., Pontil, M., & Jones, D. T. (2011). Predictions of hot spot residues at protein-protein interfaces using support vector machines. PLoS One, 6(2), e16774. https://doi.org/10.1371/journal.pone.0016774
  • Lyskov, S., & Gray, J. J. (2008). The RosettaDock server for local protein-protein docking. Nucleic Acids Research, 36, W233–238. https://doi.org/10.1093/nar/gkn216
  • Maiangwa, J., Hamdan, S. H., Mohamad Ali, M. S., Salleh, A. B., Zaliha Raja Abd Rahman, R. N., Shariff, F. M., & Leow, T. C. (2021). Enhancing the stability of Geobacillus zalihae T1 lipase in organic solvents and insights into the structural stability of its variants. Journal of Molecular Graphics & Modelling, 105, 107897. https://doi.org/10.1016/j.jmgm.2021.107897
  • MacPyMol. (2021&). The PyMOL molecular graphics system. Version 2.0. Schrodinger, LLC.
  • Omran, A. R. (1971). The epidemiologic transition. A theory of the epidemiology of population change. The Milbank Memorial Fund Quarterly, 49(4), 509–538. https://www.jstor.org/stable/3349375
  • Oyewusi, H. A., Wu, Y.-S., Safi, S. Z., Wahab, R. A., Hatta, M. H. M., & Batumalaie, K. (2022). Molecular dynamics simulations reveal the inhibitory mechanism of Withanolide A against α-glucosidase and α-amylase. Journal of Biomolecular Structure and Dynamics, 3, 1–16. https://doi.org/10.1080/07391102.2022.2104375
  • Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Research, 33, W363–367. https://doi.org/10.1093/nar/gki481
  • Silberstein, M., Dennis, S., Brown, L., Kortvelyesi, T., Clodfelter, K., & Vajda, S. (2003). Identification of substrate binding sites in enzymes by computational solvent mapping. Journal of Molecular Biology, 332(5), 1095–1113. https://doi.org/10.1016/j.jmb.2003.08.019
  • Yachnin, B. J., Azouz, L. R., White III, R. E., Minetti, C. A. S.A., Remeta, D. P., Tan, V. M., Drake, J. M., & Khare, S. D. (2022). Massively parallel, computationally guided design of a proenzyme. Proceedings of the National Academy of Sciences of the United States of America 119, e2116097119. [accessed 2022 Nov 5]. https://www.pnas.org/doi/abs/10.1073/pnas.2116097119
  • Zofair, S. F. F., Arsalan, A., Khan, M. A., Alhumaydhi, F. A., & Younus, H. (2020). Immobilization of laccase on Sepharose-linked antibody support for decolourization of phenol red. International Journal of Biological Macromolecules, 161, 78–87. https://doi.org/10.1016/j.ijbiomac.2020.06.009
  • Zugazagoitia, J., Guedes, C., Ponce, S., Ferrer, I., Molina-Pinelo, S., & Paz-Ares, L. (2016). Current challenges in cancer treatment. Clinical Therapeutics, 38(7), 1551–1566. https://doi.org/10.1016/j.clinthera.2016.03.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.