121
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A knowledge-based protein-protein interaction inhibition (KPI) pipeline: an insight from drug repositioning for COVID-19 inhibition

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 11700-11713 | Received 10 Oct 2022, Accepted 22 Dec 2022, Published online: 09 Jan 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Arkin, M. R., & Whitty, A. (2009). The road less traveled: modulating signal transduction enzymes by inhibiting their protein–protein interactions. Current Opinion in Chemical Biology, 13(3), 284–290. https://doi.org/10.1016/j.cbpa.2009.05.125
  • Azaizeh, H., Saad, B., Khalil, K., & Said, O. (2006). The state of the art of traditional Arab herbal medicine in the Eastern region of the Mediterranean: a review. Evidence-Based Complementary and Alternative Medicine: eCAM, 3(2), 229–235. https://doi.org/10.1093/ecam/nel034
  • Bai, Y., Ye, F., Feng, Y., Liao, H., Song, H., Qi, J., Gao, G. F., Tan, W., Fu, L., & Shi, Y. (2021). Structural basis for the inhibition of the SARS-CoV-2 main protease by the anti-HCV drug narlaprevir. Signal Transduction and Targeted Therapy, 6(1), 1–3. https://doi.org/10.1038/s41392-021-00468-9
  • Banerjee, A. K., Blanco, M. R., Bruce, E. A., Honson, D. D., Chen, L. M., Chow, A., Bhat, P., Ollikainen, N., Quinodoz, S. A., Loney, C., Thai, J., Miller, Z. D., Lin, A. E., Schmidt, M. M., Stewart, D. G., Goldfarb, D., De Lorenzo, G., Rihn, S. J., Voorhees, R. M., … Guttman, M. (2020). SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell, 183(5), 1325–1339.e21. https://doi.org/10.1016/j.cell.2020.10.004
  • Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V., Christie, C. H., Dalenberg, K., Di Costanzo, L., Duarte, J. M., Dutta, S., Feng, Z., Ganesan, S., Goodsell, D. S., Ghosh, S., Green, R. K., Guranović, V., Guzenko, D., Hudson, B. P., … Zhuravleva, M. (2021). RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Research, 49(D1), D437–D451. https://doi.org/10.1093/nar/gkaa1038
  • Christoffer, C., Bharadwaj, V., Luu, R., & Kihara, D. (2021). LZerD protein-protein docking webserver enhanced with de novo structure prediction. Frontiers in Molecular Biosciences, 8, 724947. https://doi.org/10.3389/fmolb.2021.724947
  • Christoffer, C., Chen, S., Bharadwaj, V., Aderinwale, T., Kumar, V., Hormati, M., & Kihara, D. (2021). LZerD webserver for pairwise and multiple protein–protein docking. Nucleic Acids Research, 49(W1), W359–W365. https://doi.org/10.1093/nar/gkab336
  • Cosconati, S., Forli, S., Perryman, A. L., Harris, R., Goodsell, D. S., & Olson, A. J. (2010). Virtual screening with AutoDock: theory and practice. Expert Opinion on Drug Discovery, 5(6), 597–607. https://doi.org/10.1517/17460441.2010.484460
  • Coyne, A. G., Scott, D. E., & Abell, C. (2010). Drugging challenging targets using fragment-based approaches. Current Opinion in Chemical Biology, 14(3), 299–307. https://doi.org/10.1016/j.cbpa.2010.02.010
  • Dai, W., Zhang, B., Jiang, X.-M., Su, H., Li, J., Zhao, Y., Xie, X., Jin, Z., Peng, J., Liu, F., Li, C., Li, Y., Bai, F., Wang, H., Cheng, X., Cen, X., Hu, S., Yang, X., Wang, J., … Liu, H. (2020). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science (New York, NY), 368(6497), 1331–1335. https://doi.org/10.1126/science.abb4489
  • Dangerfield, T. L., Huang, N. Z., & Johnson, K. A. (2020). Remdesivir is effective in combating COVID-19 because it is a better substrate than ATP for the viral RNA-dependent RNA polymerase. iScience, 23(12), 101849. https://doi.org/10.1016/j.isci.2020.101849
  • Dinesh, D. C., Chalupska, D., Silhan, J., Koutna, E., Nencka, R., Veverka, V., & Boura, E. (2020). Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathogens, 16(12), e1009100. https://doi.org/10.1371/journal.ppat.1009100
  • El‐Kamand, S., Du Plessis, M. ‐D., Breen, N., Johnson, L., Beard, S., Kwan, A. H., Richard, D. J., Cubeddu, L., & Gamsjaeger, R. (2022). A distinct ssDNA/RNA binding interface in the Nsp9 protein from SARS‐CoV‐2. Proteins: Structure, Function, and Bioinformatics, 90(1), 176–185. https://doi.org/10.1002/prot.26205
  • Firenzuoli, F., & Gori, L. (2007). Herbal medicine today: clinical and research issues. Evidence-Based Complementary and Alternative Medicine, 4(s1), 37–40. https://doi.org/10.1093/ecam/nem096
  • Gao, X., Zhu, K., Qin, B., Olieric, V., Wang, M., & Cui, S. (2021). Crystal structure of SARS-CoV-2 Orf9b in complex with human TOM70 suggests unusual virus-host interactions. Nature Communications, 12(1), 1-9. https://doi.org/10.1038/s41467-021-23118-8
  • Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., … Rao, Z. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science (New York, NY), 368(6492), 779–782. https://doi.org/10.1126/science.abb7498
  • Garófolo, A., Qiao, L., & Maia-Lemos, P. d S. (2021). Approach to nutrition in cancer patients in the context of the coronavirus disease 2019 (COVID-19) pandemic: Perspectives. Nutrition and Cancer, 73(8), 1293–1301. https://doi.org/10.1080/01635581.2020.1797126
  • Ghazanfar, S. A. (2011). Medicinal and aromatic plants-Arabia and Iran. Ethnopharmacology section, Biological, Physiological and Health Sciences. Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO. EOLSS Publishers. http://www.eolss.net
  • Gil, C., Ginex, T., Maestro, I., Nozal, V., Barrado-Gil, L., Cuesta-Geijo, M. Á., Urquiza, J., Ramírez, D., Alonso, C., Campillo, N. E., & Martinez, A. (2020). COVID-19: drug targets and potential treatments. Journal of Medicinal Chemistry, 63(21), 12359–12386. https://doi.org/10.1021/acs.jmedchem.0c00606
  • Gordon, C. J., Tchesnokov, E. P., Woolner, E., Perry, J. K., Feng, J. Y., Porter, D. P., & Götte, M. (2020). Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. The Journal of Biological Chemistry, 295(20), 6785–6797. https://doi.org/10.1074/jbc.RA120.013679
  • Gordon, D. E., Hiatt, J., Bouhaddou, M., Rezelj, V. V., Ulferts, S., Braberg, H., Jureka, A. S., Obernier, K., Guo, J. Z., Batra, J., Kaake, R. M., Weckstein, A. R., Owens, T. W., Gupta, M., Pourmal, S., Titus, E. W., Cakir, M., Soucheray, M., McGregor, M., … Lewin, H. A., QCRG Structural Biology Consortium. (2020). Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science, 370(6521), eabe9403. https://doi.org/10.1126/science.abe9403
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
  • Henley, M. J., & Koehler, A. N. (2021). Advances in targeting ‘undruggable’transcription factors with small molecules. Nature Reviews. Drug Discovery, 20(9), 669–688. https://doi.org/10.1038/s41573-021-00199-0
  • Henrich, S., Cameron, A., Bourenkov, G. P., Kiefersauer, R., Huber, R., Lindberg, I., Bode, W., & Than, M. E. (2003). The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nature Structural Biology, 10(7), 520–526. https://doi.org/10.1038/nsb941
  • Heywood, V. H. (2019). Perspectives for plant conservation in the Mediterranean region. Botanika Chronika, 22, 49–61.
  • Hillen, H. S., Kokic, G., Farnung, L., Dienemann, C., Tegunov, D., & Cramer, P. (2020). Structure of replicating SARS-CoV-2 polymerase. Nature, 584(7819), 154–156. https://doi.org/10.1038/s41586-020-2368-8
  • Hoffmann, M., Kleine-Weber, H., & Pöhlmann, S. (2020). A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Molecular Cell, 78(4), 779–784.e5. https://doi.org/10.1016/j.molcel.2020.04.022
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052
  • Khan, M. S. A., Ahmad, I., & Chattopadhyay, D. (2018). New look to phytomedicine: Advancements in herbal products as novel drug leads. Academic Press.
  • Kneller, D. W., Galanie, S., Phillips, G., O'Neill, H. M., Coates, L., & Kovalevsky, A. (2020). Malleability of the SARS-CoV-2 3CL Mpro active-site cavity facilitates binding of clinical antivirals. Structure (London, England: 1993), 28(12), 1313–1320.e3. https://doi.org/10.1016/j.str.2020.10.007
  • Koes, D. R., & Camacho, C. J. (2012). ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Research, 40(Web Server issue), W409–W414. https://doi.org/10.1093/nar/gks378
  • Kumar, S. (2021). In silico modeling of drugs against coronaviruses (pp. 735–759). Springer.
  • Lanjanian, H., Moazzam-Jazi, M., Hedayati, M., Akbarzadeh, M., Guity, K., Sedaghati-Khayat, B., Azizi, F., & Daneshpour, M. S. (2021). SARS-CoV-2 infection susceptibility influenced by ACE2 genetic polymorphisms: insights from Tehran Cardio-Metabolic Genetic Study. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-020-80325-x
  • Lin, L.-T., Hsu, W.-C., & Lin, C.-C. (2014). Antiviral natural products and herbal medicines. Journal of Traditional and Complementary Medicine, 4(1), 24–35. https://doi.org/10.4103/2225-4110.124335
  • Lipinski, C. A. (2004). Lead-and drug-like compounds: the rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lu, H., Zhou, Q., He, J., Jiang, Z., Peng, C., Tong, R., & Shi, J. (2020). Recent advances in the development of protein–protein interactions modulators: mechanisms and clinical trials. Signal Transduction and Targeted Therapy, 5(1), 1–23. https://doi.org/10.1038/s41392-020-00315-3
  • Ma, C., Sacco, M. D., Hurst, B., Townsend, J. A., Hu, Y., Szeto, T., Zhang, X., Tarbet, B., Marty, M. T., Chen, Y., & Wang, J. (2020). Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Research, 30(8), 678–692. https://doi.org/10.1038/s41422-020-0356-z
  • Malde, A. K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P. C., Oostenbrink, C., & Mark, A. E. (2011). An automated force field topology builder (ATB) and repository: version 1.0. Journal of Chemical Theory and Computation, 7(12), 4026–4037. https://doi.org/10.1021/ct200196m
  • McInnes, C. (2007). Virtual screening strategies in drug discovery. Current Opinion in Chemical Biology, 11(5), 494–502. https://doi.org/10.1016/j.cbpa.2007.08.033
  • Mengist, H. M., Dilnessa, T., & Jin, T. (2021). Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Frontiers in Chemistry, 9, 622898. https://doi.org/10.3389/fchem.2021.622898
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nero, T. L., Morton, C. J., Holien, J. K., Wielens, J., & Parker, M. W. (2014). Oncogenic protein interfaces: small molecules, big challenges. Nature Reviews. Cancer, 14(4), 248–262. https://doi.org/10.1038/nrc3690
  • Nguyen, N. T., Nguyen, T. H., Pham, T. N. H., Huy, N. T., Bay, M. V., Pham, M. Q., Nam, P. C., Vu, V. V., & Ngo, S. T. (2020). Autodock vina adopts more accurate binding poses but autodock4 forms better binding affinity. Journal of Chemical Information and Modeling, 60(1), 204–211. https://doi.org/10.1021/acs.jcim.9b00778
  • Pal, S. K., & Fatima, S. H. (2014). Cancer treatment with the alternative herbal medicine HUMA: Two case reports. Middle East Journal of Cancer, 5(1), 41–46.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Ran, X., & Gestwicki, J. E. (2018). Inhibitors of protein–protein interactions (PPIs): An analysis of scaffold choices and buried surface area. Current Opinion in Chemical Biology, 44, 75–86. https://doi.org/10.1016/j.cbpa.2018.06.004
  • Reddy, A. S., Pati, S. P., Kumar, P. P., Pradeep, H., & Sastry, G. N. (2007). Virtual screening in drug discovery-a computational perspective. Current Protein & Peptide Science, 8(4), 329–351. https://doi.org/10.2174/138920307781369427
  • Rosenbaum, M. I., Clemmensen, L. S., Bredt, D. S., Bettler, B., & Strømgaard, K. (2020). Targeting receptor complexes: a new dimension in drug discovery. Nature Reviews. Drug Discovery, 19(12), 884–901. https://doi.org/10.1038/s41573-020-0086-4
  • Schmid, N., Eichenberger, A. P., Choutko, A., Riniker, S., Winger, M., Mark, A. E., & van Gunsteren, W. F. (2011). Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal: EBJ, 40(7), 843–856. https://doi.org/10.1007/s00249-011-0700-9
  • Sperandio, O., Miteva, M. A., & Villoutreix, B. O. (2008). Combining ligand-and structure-based methods in drug design projects. Current Computer Aided-Drug Design, 4(3), 250–258. https://doi.org/10.2174/157340908785747447
  • Stertz, S., Reichelt, M., Spiegel, M., Kuri, T., Martínez-Sobrido, L., García-Sastre, A., Weber, F., & Kochs, G. (2007). The intracellular sites of early replication and budding of SARS-coronavirus. Virology, 361(2), 304–315. https://doi.org/10.1016/j.virol.2006.11.027
  • Tan, K., Kim, Y., Jedrzejczak, R., Maltseva, N., Endres, M., Michalska, K., & Joachimiak, A. (2020). The crystal structure of Nsp9 RNA binding protein of SARS CoV-2. RCSB Protein Data Bank.
  • Tan, Y. W., Fung, T. S., Shen, H., Huang, M., & Liu, D. X. (2018). Coronavirus infectious bronchitis virus non-structural proteins 8 and 12 form stable complex independent of the non-translated regions of viral RNA and other viral proteins. Virology, 513, 75–84. https://doi.org/10.1016/j.virol.2017.10.004
  • Taylor, R. D., Jewsbury, P. J., & Essex, J. W. (2002). A review of protein-small molecule docking methods. Journal of Computer-Aided Molecular Design, 16(3), 151–166. https://doi.org/10.1023/a:1020155510718
  • Torkamanian-Afshar, M., Lanjanian, H., Nematzadeh, S., Tabarzad, M., Najafi, A., Kiani, F., & Masoudi-Nejad, A. (2020). RPINBASE: an online toolbox to extract features for predicting RNA-protein interactions. Genomics, 112(3), 2623–2632. https://doi.org/10.1016/j.ygeno.2020.02.013
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • UniProt. (2021). The universal protein knowledgebase in 2021. Nucleic Acids Research, 49, D480–D489.
  • van Noort, C. W., Honorato, R. V., & Bonvin, A. M. (2021). Information-driven modeling of biomolecular complexes. Current Opinion in Structural Biology, 70, 70–77. https://doi.org/10.1016/j.sbi.2021.05.003
  • van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2. 2 web server: user-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725. https://doi.org/10.1016/j.jmb.2015.09.014
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0
  • Wang, Q., Wu, J., Wang, H., Gao, Y., Liu, Q., Mu, A., Ji, W., Yan, L., Zhu, Y., Zhu, C., Fang, X., Yang, X., Huang, Y., Gao, H., Liu, F., Ge, J., Sun, Q., Yang, X., Xu, W., … Rao, Z. (2020). Structural basis for RNA replication by the SARS-CoV-2 polymerase. Cell, 182(2), 417–428.e13. e413 https://doi.org/10.1016/j.cell.2020.05.034
  • Weeks, S., De Graef, S., & Munawar, A. (2020). X-ray crystallographic structure of Orf9b from SARS-CoV-2. RCSB PDB, 12, 1–9.
  • Winter, A., Higueruelo, A. P., Marsh, M., Sigurdardottir, A., Pitt, W. R., & Blundell, T. L. (2012). Biophysical and computational fragment-based approaches to targeting protein–protein interactions: applications in structure-guided drug discovery. Quarterly Reviews of Biophysics, 45(4), 383–426. https://doi.org/10.1017/S0033583512000108
  • Wrapp, D., Wang, N., Corbett, K., Goldsmith, J., Hsieh, C., Abiona, O., Graham, B., & McLellan, J. (2020). Prefusion 2019-nCoV spike glycoprotein with a single receptor-binding domain up. Science, 367(6483), 1260–1263.
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (New York, NY), 367(6485), 1444–1448. https://doi.org/10.1126/science.abb2762
  • Yesilada, E. (2011). Contribution of traditional medicine in the healthcare system of the Middle East. Chinese Journal of Integrative Medicine, 17(2), 95–98. https://doi.org/10.1007/s11655-011-0651-0
  • Yin, W., Mao, C., Luan, X., Shen, D.-D., Shen, Q., Su, H., Wang, X., Zhou, F., Zhao, W., Gao, M., Chang, S., Xie, Y.-C., Tian, G., Jiang, H.-W., Tao, S.-C., Shen, J., Jiang, Y., Jiang, H., Xu, Y., … Xu, H. E. (2020). Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science (New York, NY), 368(6498), 1499–1504. https://doi.org/10.1126/science.abc1560
  • Zhang, B., Zhao, Y., Jin, Z., Liu, X., Yang, H., Rao, Z. (2020). 6M03: The Crystal Structure of COVID-19 Main Protease in Apo Form; Protein Data Base. https://doi.org/10.2210/pdb6m03/pdb.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.