231
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Identification of deleterious nsSNPs in human HGF gene: in silico approach

ORCID Icon, &
Pages 11889-11903 | Received 15 Oct 2022, Accepted 24 Dec 2022, Published online: 04 Jan 2023

References

  • Adzhubei, I., Jordan, D. M., & Sunyaev, S. R. (2013). Predicting functional effect of human missense mutations using PolyPhen-2. Current Protocols in Human Genetics, 76(1), 7.20.1–7.20.41. https://doi.org/10.1002/0471142905.hg0720s76
  • Akhtar, M., Jamal, T., Jamal, H., Din, J. U., Jamal, M., Arif, M., Arshad, M., & Jalil, F. (2019). Identification of most damaging nsSNPs in human CCR6 gene: In silico analyses. International Journal of Immunogenetics, 46(6), 459–471. https://doi.org/10.1111/iji.12449
  • Ali, M. Z., Farid, A., Ahmad, S., Muzammal, M., Mohaini, M. A., Alsalman, A. J., … & Khan, M. A. (2022). In Silico Analysis Identified Putative Pathogenic Missense nsSNPs in Human SLITRK1 Gene. Genes, 13(4), 672. https://doi.org/10.3390/genes13040672
  • Ashkenazy, H., Erez, E., Martz, E., Pupko, T., & Ben-Tal, N. (2010). ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Research, 38(Web Server issue), W529–533. https://doi.org/10.1093/nar/gkq399
  • Awadalla, M., Thapa, S., Burdon, K., Hewitt, A., & Craig, J. (2011). The association of hepatocyte growth factor (HGF) gene with primary angle closure glaucoma in the Nepalese population. Molecular Vision, 17, 2248–2254.
  • Barrio-Barrio, J., Bonet-Farriol, E., Galdós, M., Noval, S., Pueyo, V., Breeze, C. E., Santos, J. L., Alfonso-Bartolozzi, B., Recalde, S., & Patiño-García, A. (2019). HGF-rs12536657 and ocular biometric parameters in hyperopic children, emmetropic adolescents, and young adults: A multicenter quantitative trait study. Journal of Ophthalmology, 2019, 7454250. https://doi.org/10.1155/2019/7454250
  • Bashir, R., Irfan, B., Khalid, M., Naz, S., Saleem, F., Nouman, U., & Naz, S. (2019). Association of hepatocyte growth factor (HGF) gene polymorphisms with primary angle closure glaucoma from Lahore, Pakistani population. Journal of the Pakistan Medical Association, 70(2), 208–212. https://doi.org/10.5455/JPMA.296377
  • Bhatnager, R., & Dang, A. S. (2018). Comprehensive in-silico prediction of damage associated SNPs in Human Prolidase gene. Scientific reports, 8(1), 1–14. https://doi.org/10.1038/s41598-018-27789-0
  • Bielinski, S. J., Berardi, C., Decker, P. A., Larson, N. B., Bell, E. J., Pankow, J. S., Sale, M. M., Tang, W., Hanson, N. Q., Wassel, C. L., de Andrade, M., Budoff, M. J., Polak, J. F., Sicotte, H., & Tsai, M. Y. (2017). Hepatocyte growth factor demonstrates racial heterogeneity as a biomarker for coronary heart disease. Heart (British Cardiac Society), 103(15), 1185–1193. https://doi.org/10.1136/heartjnl-2016-310450
  • Bromberg, Y., & Rost, B. (2007). SNAP: Predict effect of non-synonymous polymorphisms on function. Nucleic Acids Research, 35(11), 3823–3835. https://doi.org/10.1093/nar/gkm238
  • Burdon, K. P., Macgregor, S., Bykhovskaya, Y., Javadiyan, S., Li, X., Laurie, K. J., Muszynska, D., Lindsay, R., Lechner, J., Haritunians, T., Henders, A. K., Dash, D., Siscovick, D., Anand, S., Aldave, A., Coster, D. J., Szczotka-Flynn, L., Mills, R. A., Iyengar, S. K., … Craig, J. E. (2011). Association of polymorphisms in the hepatocyte growth factor gene promoter with keratoconus. Investigative Ophthalmology & Visual Science, 52(11), 8514–8519. https://doi.org/10.1167/iovs.11-8261
  • Calabrese, R., Capriotti, E., Fariselli, P., Martelli, P. L., & Casadio, R. (2009). Functional annotations improve the predictive score of human disease-related mutations in proteins. Human Mutation, 30(8), 1237–1244. https://doi.org/10.1002/humu.21047
  • Capriotti, E., & Altman, R. B. (2011). Improving the prediction of disease-related variants using protein three-dimensional structure. BMC bioinformatics, 12(4), 1–11. https://doi.org/10.1186/1471-2105-12-S4-S3
  • Capriotti, E., Calabrese, R., & Casadio, R. (2006). Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics (Oxford, England), 22(22), 2729–2734. https://doi.org/10.1093/bioinformatics/btl423
  • Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 33(Web Server issue), W306–W310. https://doi.org/10.1093/nar/gki375
  • Carugo, O., & Pongor, S. (2001). A normalized root-mean-spuare distance for comparing protein three-dimensional structures. Protein Science : a Publication of the Protein Society, 10(7), 1470–1473. https://doi.org/10.1110/ps.690101
  • Chandrasekaran, G., Hwang, E. C., Kang, T. W., Kwon, D. D., Park, K., Lee, J.-J., & Lakshmanan, V.-K. (2017a). In silico analysis of the deleterious nsSNPs (missense) in the homeobox domain of human HOXB13 gene responsible for hereditary prostate cancer. Chemical Biology & Drug Design, 90(2), 188–199. https://doi.org/10.1111/cbdd.12938
  • Chandrasekaran, G., Hwang, E. C., Kang, T. W., Kwon, D. D., Park, K., Lee, J.-J., & Lakshmanan, V.-K. (2017b). Computational modeling of complete HOXB13 protein for predicting the functional effect of SNPs and the associated role in hereditary prostate cancer. Scientific Reports, 7, 43830. https://doi.org/10.1038/srep43830
  • Chen, C.-W., Lin, J., & Chu, Y.-W. (2013). iStable: Off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinformatics, 14(2), S5. https://doi.org/10.1186/1471-2105-14-S2-S5
  • Cheng, J., Randall, A., & Baldi, P. (2006). Prediction of protein stability changes for single-site mutations using support vector machines. Proteins, 62(4), 1125–1132. https://doi.org/10.1002/prot.20810
  • Dash, R., Munni, Y. A., Mitra, S., Choi, H. J., Jahan, S. I., Chowdhury, A., Jang, T. J., & Moon, I. S. (2022). Dynamic insights into the effects of nonsynonymous polymorphisms (nsSNPs) on loss of TREM2 function. Scientific Reports, 12(1), 9378. https://doi.org/10.1038/s41598-022-13120-5
  • Desole, C., Gallo, S., Vitacolonna, A., Montarolo, F., Bertolotto, A., Vivien, D., Comoglio, P., & Crepaldi, T. (2021). HGF and MET: From brain development to neurological disorders. Frontiers in Cell and Developmental Biology, 9, 683609. Retrieved October 10, 2022, from https://www.frontiersin.org/articles/10.3389/fcell.2021.683609. https://doi.org/10.3389/fcell.2021.683609
  • Geourjon, C., & Deléage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences: CABIOS, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
  • Goode, E. L., Chenevix-Trench, G., Hartmann, L. C., Fridley, B. L., Kalli, K. R., Vierkant, R. A., Larson, M. C., White, K. L., Keeney, G. L., Oberg, T. N., Cunningham, J. M., Beesley, J., Johnatty, S. E., Chen, X., Goodman, K. E., Armasu, S. M., Rider, D. N., Sicotte, H., Schmidt, M. M., … Sellers, T. A, Ovarian Cancer Association Consortium (2011). Assessment of hepatocyte growth factor in ovarian cancer mortality. Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 20(8), 1638–1648. https://doi.org/10.1158/1055-9965.EPI-11-0455
  • Gorlova, O. Y., Xiao, X., Tsavachidis, S., Amos, C. I., & Gorlov, I. P. (2022). SNP characteristics and validation success in genome wide association studies. Human Genetics, 141(2), 229–238. https://doi.org/10.1007/s00439-021-02407-8
  • Han, W., Yap, M. K. H., Wang, J., & Yip, S. P. (2006). Family-based association analysis of hepatocyte growth factor (HGF) gene polymorphisms in high myopia. Investigative Ophthalmology & Visual Science, 47(6), 2291–2299. https://doi.org/10.1167/iovs.05-1344
  • Hashemi Doulabi, M. S., Ghaedi, K., Ranji, N., & Khazaei Koohpar, Z. (2022). rs5745676 of HGF 3’UTR associates with hsa-miR-340-5p binding potential in breast cancer and gastric cancer in Isfahan population. Human Gene, 33, 201075. https://doi.org/10.1016/j.humgen.2022.201075
  • Hoda, A., Tafaj, M., & Sallaku, E. (2021). In silico structural, functional and phylogenetic analyses of cellulase from Ruminococcus albus. Journal, Genetic Engineering & Biotechnology, 19(1), 58. https://doi.org/10.1186/s43141-021-00162-x
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
  • Khalili, M., Mashayekhi, F., & Salehi, Z, Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran (2020). Association of hepatocyte growth factor genetic variation (S3735520) and its concentration in autism spectrum disorders: A case-control study. Caspian Journal of Neurological Sciences, 6(4), 197–204. https://doi.org/10.32598/CJNS.6.23.6
  • Klausen, M., Jespersen, M. C., Nielsen, H., Jensen, K. K., Jurtz, V., Sønderby, C., et al. (2018). NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning. Undefined. Retrieved August 31, 2022, from https://www.semanticscholar.org/paper/NetSurfP-2.0%3A-improved-prediction-of-protein-by-Klausen-Jespersen/5fea75fce30d0402768f9680bba9d27bbdfff794.
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein–protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Kumar, P., Henikoff, S., & Ng, P. C. (2009). Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature Protocols, 4(7), 1073–1081. https://doi.org/10.1038/nprot.2009.86
  • Laimer, J., Hofer, H., Fritz, M., Wegenkittl, S., & Lackner, P. (2015). MAESTRO—Multi agent stability prediction upon point mutations. BMC Bioinformatics, 16(1), 116. https://doi.org/10.1186/s12859-015-0548-6
  • Larson, N. B., Berardi, C., Decker, P. A., Wassel, C. L., Kirsch, P. S., Pankow, J. S., Sale, M. M., de Andrade, M., Sicotte, H., Tang, W., Hanson, N. Q., Tsai, M. Y., Taylor, K. D., & Bielinski, S. J. (2015). Trans-ethnic meta-analysis identifies common and rare variants associated with hepatocyte growth factor levels in the Multi-Ethnic Study of Atherosclerosis (MESA). Annals of Human Genetics, 79(4), 264–274. https://doi.org/10.1111/ahg.12119
  • Mathe, E., Olivier, M., Kato, S., Ishioka, C., Hainaut, P., & Tavtigian, S. V. (2006). Computational approaches for predicting the biological effect of p53 missense mutations: A comparison of three sequence analysis based methods. Nucleic Acids Research, 34(5), 1317–1325. https://doi.org/10.1093/nar/gkj518
  • Meyer, M. J., Lapcevic, R., Romero, A. E., Yoon, M., Das, J., Beltrán, J. F., Mort, M., Stenson, P. D., Cooper, D. N., Paccanaro, A., & Yu, H. (2016). mutation3D: Cancer gene prediction through atomic clustering of coding variants in the structural proteome. Human Mutation, 37(5), 447–456. https://doi.org/10.1002/humu.22963
  • Naveed, M., Tehreem, S., & Mehboob, M. Z. (2019). In-Silico analysis of missense SNPs in Human HPPD gene associated with Tyrosinemia type III and Hawkinsinuria. Computational Biology and Chemistry, 80, 284–291. https://doi.org/10.1016/j.compbiolchem.2019.04.007
  • Ng, P. C., & Henikoff, S. (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research, 31(13), 3812–3814. https://doi.org/10.1093/nar/gkg509
  • Ogunmoroti, O., Osibogun, O., Ferraro, R. A., Ndunda, P. M., Larson, N. B., Decker, P. A., Bielinski, S. J., Blumenthal, R. S., Budoff, M. J., & Michos, E. D. (2022). Hepatocyte growth factor is associated with greater risk of extracoronary calcification: Results from the multiethnic study of atherosclerosis. Open Heart, 9(1), e001971. https://doi.org/10.1136/openhrt-2022-001971
  • Oliveira, A. G., Araújo, T. G., Carvalho, B. d M., Rocha, G. Z., Santos, A., & Saad, M. J. A. (2018). The role of hepatocyte growth factor (HGF) in insulin resistance and diabetes. Frontiers in Endocrinology, 9, 503. Retrieved September 11, 2022, from https://www.frontiersin.org/articles/10.3389/fendo.2018.00503. https://doi.org/10.3389/fendo.2018.00503
  • Pandurangan, A. P., Ochoa-Montaño, B., Ascher, D. B., & Blundell, T. L. (2017). SDM: A server for predicting effects of mutations on protein stability. Nucleic Acids Research, 45(W1), W229–W235. https://doi.org/10.1093/nar/gkx439
  • Parthiban, V., Gromiha, M. M., & Schomburg, D. (2006). CUPSAT: Prediction of protein stability upon point mutations. Nucleic Acids Research, 34(Web Server issue), W239–242. https://doi.org/10.1093/nar/gkl190
  • Pejaver, V., Urresti, J., Lugo-Martinez, J., Pagel, K. A., Lin, G. N., Nam, H.-J., Mort, M., Cooper, D. N., Sebat, J., Iakoucheva, L. M., Mooney, S. D., & Radivojac, P. (2020). Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nature Communications, 11(1), 5918. https://doi.org/10.1038/s41467-020-19669-x
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pires, D. E. V., Ascher, D. B., & Blundell, T. L. (2014a). mCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics (Oxford, England), 30(3), 335–342. https://doi.org/10.1093/bioinformatics/btt691
  • Pires, D. E. V., Ascher, D. B., & Blundell, T. L. (2014b). DUET: A server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Research, 42(Web Server issue), W314–W319. https://doi.org/10.1093/nar/gku411
  • Ravi, S., David, W., Steven, C. S., Jerzy, M. K., Lincoln, D. S., Gabor, M., … & David, A. (2001). A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 409(6822), 928–933. https://doi.org/10.1038/35057149
  • Shafie, A., Khan, S., Batra, S., Anjum, F., Mohammad, T., Alam, S., Yadav, D. K., Islam, A., & Hassan, M. I. (2021). Investigating single amino acid substitutions in PIM1 kinase: A structural genomics approach. PloS One, 16(10), e0258929. https://doi.org/10.1371/journal.pone.0258929
  • Sim, N.-L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., & Ng, P. C. (2012). SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Research, 40(Web Server issue), W452–W457. https://doi.org/10.1093/nar/gks539
  • Singh, A., Thakur, M., Singh, S. K., Sharma, L. K., & Chandra, K. (2020). Exploring the effect of nsSNPs in human YPEL3 gene in cellular senescence. Scientific Reports, 10(1), 15301. https://doi.org/10.1038/s41598-020-72333-8
  • Stella, M. C., & Comoglio, P. M. (1999). HGF: a multifunctional growth factor controlling cell scattering. The international journal of biochemistry & cell biology, 31(12), 1357–1362. https://doi.org/10.1016/S1357-2725(99)00089-8
  • Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., Doerks, T., Stark, M., Muller, J., Bork, P., Jensen, L. J., & von Mering, C. (2011). The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Research, 39(Database issue), D561–D568. https://doi.org/10.1093/nar/gkq973
  • Takiuchi, S., Mannami, T., Miyata, T., Kamide, K., Tanaka, C., Kokubo, Y., Koyama, Y., Inamoto, N., Katsuya, T., Iwai, N., Kawano, Y., Ogihara, T., & Tomoike, H. (2004). Identification of 21 single nucleotide polymorphisms in human hepatocyte growth factor gene and association with blood pressure and carotid atherosclerosis in the Japanese population. Atherosclerosis, 173(2), 301–307. https://doi.org/10.1016/j.atherosclerosis.2003.12.020
  • Tang, H., & Thomas, P. D. (2016). PANTHER-PSEP: Predicting disease-causing genetic variants using position-specific evolutionary preservation. Bioinformatics (Oxford, England), 32(14), 2230–2232. https://doi.org/10.1093/bioinformatics/btw222
  • Tolbert, W. D., Daugherty-Holtrop, J., Gherardi, E., Vande Woude, G., & Xu, H. E. (2010). Structural basis for agonism and antagonism of hepatocyte growth factor. Proceedings of the National Academy of Sciences of the United States of America, 107(30), 13264–13269. https://doi.org/10.1073/pnas.1005183107
  • Veerappan, S., Pertile, K. K., Islam, A. F. M., Schäche, M., Chen, C. Y., Mitchell, P., Dirani, M., & Baird, P. N. (2010). Role of the hepatocyte growth factor gene in refractive error. Ophthalmology, 117(2), 239–245.e2. https://doi.org/10.1016/j.ophtha.2009.07.002
  • Venkata Subbiah, H., Ramesh Babu, P., & Subbiah, U. (2022). Determination of deleterious single-nucleotide polymorphisms of human LYZ C gene: An in silico study. Journal, Genetic Engineering & Biotechnology, 20(1), 92. https://doi.org/10.1186/s43141-022-00383-8
  • Venselaar, H., Te Beek, T. A., Kuipers, R. K., Hekkelman, M. L., & Vriend, G. (2010). Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics, 11(1), 548. https://doi.org/10.1186/1471-2105-11-548
  • Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C., Kazi, F., Lopes, C. T., Maitland, A., Mostafavi, S., Montojo, J., Shao, Q., Wright, G., Bader, G. D., & Morris, Q. (2010). The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Research, 38(Web Server issue), W214–W220. https://doi.org/10.1093/nar/gkq537
  • Yanovitch, T., Li, Y.-J., Metlapally, R., Abbott, D., Viet, K.-N T., & Young, T. L. (2009). Hepatocyte growth factor and myopia: Genetic association analyses in a Caucasian population. Molecular Vision, 15, 1028–1035.
  • Zhang, Y., & Skolnick, J. (2005). TM-align: A protein structure alignment algorithm based on the TM-score. Undefined. Retrieved September 1, 2022, from https://www.semanticscholar.org/paper/TM-align%3A-a-protein-structure-alignment-algorithm-Zhang-Skolnick/08a05b9e8548354e24542c2b5f68b1432b50b27d.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.