131
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Investigation of the interactions of HSA and SARS-CoV-2 papain-like protease against eugenol for novel COVID-19 drug discovery: spectroscopic and insilico study

, , &
Pages 10161-10170 | Received 24 Mar 2022, Accepted 24 Nov 2022, Published online: 13 Jan 2023

References

  • Abd El-Mordy, F. M., El-Hamouly, M. M., Ibrahim, M. T., El-Rheem, G. A., Aly, O. M., Abd El-Kader, A. M., Youssif, K. A., & Abdelmohsen, U. R. (2020). Inhibition of SARS-CoV-2 main protease by phenolic compounds from Manilkara hexandra (Roxb.) Dubard assisted by metabolite profiling and in silico virtual screening. RSC Advances, 10(53), 32148–32155. https://doi.org/10.1039/d0ra05679k
  • Abou-Zied, O. K., & Al-Shihi, O. I. K. (2008). Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. Journal of the American Chemical Society, 130(32), 10793–10801. https://doi.org/10.1021/ja8031289
  • Arwansyah, A., Arif, A. R., Ramli, I., Kurniawan, I., Sukarti, S., Nur Alam, M., Illing, I., Farid Lewa, A., & Manguntungi, B. (2021). Molecular modelling on SARS-CoV-2 papain-like protease: an integrated study with homology modelling, molecular docking, and molecular dynamics simulations. SAR and QSAR in Environmental Research, 32(9), 699–718. https://doi.org/10.1080/1062936X.2021.1960601
  • Barretto, N., Jukneliene, D., Ratia, K., Chen, Z., Mesecar, A. D., & Baker, S. C. (2005). The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. Journal of Virology, 79(24), 15189–15198. https://doi.org/10.1128/JVI.79.24.15189-15198.2005
  • Benencia, F., & Courrèges, M. C. (2000). In vitro and in vivo activity of eugenol on human herpesvirus. Phytotherapy Research, 14(7), 495–500. https://doi.org/10.1002/1099-1573(200011)14:7<495::AID-PTR650>3.0.CO;2-8
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourned, P. E. (2006). The Protein Data Bank, 1999–. International Tables for Crystallography.
  • Carter, D. C., & Ho, J. X. (1994). Structure of serum albumin. In Advances in protein chemistry (pp. 153–203). Elsevier.
  • Cheng, M. H., & Bahar, I. (2014). Complete mapping of substrate translocation highlights the role of LeuT N-terminal segment in regulating transport cycle. PLoS Computational Biology, 10(10), e1003879. https://doi.org/10.1371/journal.pcbi.1003879
  • Chi, Z., & Liu, R. (2011). Phenotypic characterization of the binding of tetracycline to human serum albumin. Biomacromolecules, 12(1), 203–209. https://doi.org/10.1021/bm1011568
  • Childers, M. C., & Daggett, V. (2018). Validating molecular dynamics simulations against experimental observables in light of underlying conformational ensembles. The Journal of Physical Chemistry B, 122(26), 6673–6689. https://doi.org/10.1021/acs.jpcb.8b02144
  • Gumbart, J., Khalili-Araghi, F., Sotomayor, M., & Roux, B. (2012). Constant electric field simulations of the membrane potential illustrated with simple systems. Biochimica et Biophysica Acta, 1818(2), 294–302. https://doi.org/10.1016/j.bbamem.2011.09.030
  • Harcourt, B. H., Jukneliene, D., Kanjanahaluethai, A., Bechill, J., Severson, K. M., Smith, C. M., Rota, P. A., & Baker, S. C. (2004). Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. Journal of Virology, 78(24), 13600–13612. https://doi.org/10.1128/JVI.78.24.13600-13612.2004
  • Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
  • Joint FAO/WHO Expert Committee on Food Additives. (2006). Compendium of food additive specifications: Joint FAO/WHO Expert Committee on Food Additives: 67th Meeting 2006 (Vol. 3). Food and Agriculture Organization.
  • Jose, S., Devi, S. S., & Al-Khafaji, K. (2022). Phytochemical constituents of Inula britannica as potential inhibitors of dihydrofolate reductase: A strategic approach against shigellosis. Journal of Biomolecular Structure and Dynamics, 40(22), 11932–11947.
  • Kim, J. C., Spence, R. A., Currier, P. F., Lu, X., & Denison, M. R. (1995). Coronavirus protein processing and RNA synthesis is inhibited by the cysteine proteinase inhibitor E64d. Virology, 208(1), 1–8. https://doi.org/10.1006/viro.1995.1123
  • Koyuncu, İ., Durgun, M., Yorulmaz, N., Toprak, S., Gonel, A., Bayraktar, N., & Caglayan, M. (2021). Molecular docking demonstration of the liquorice chemical molecules on the protease and ACE2 of COVID-19 virus. Current Enzyme Inhibition, 17(2), 98–110. https://doi.org/10.2174/1573408016999201228193118
  • Lakowicz, J. R. (2013). Principles of fluorescence spectroscopy. Springer Science & Business Media.
  • Lane, T., Anantpadma, M., Freundlich, J. S., Davey, R. A., Madrid, P. B., & Ekins, S. (2019). The natural product eugenol is an inhibitor of the ebola virus in vitro. Pharmaceutical Research, 36(7), 1–6. https://doi.org/10.1007/s11095-019-2629-0
  • Lecour, S., & Lamont, K. T. (2011). Natural polyphenols and cardioprotection. Mini Reviews in Medicinal Chemistry, 11(14), 1191–1199. https://doi.org/10.2174/138955711804586766
  • Li, D., Luan, J., & Zhang, L. (2021). Molecular docking of potential SARS-CoV-2 papain-like protease inhibitors. Biochemical and Biophysical Research Communications, 538, 72–79. https://doi.org/10.1016/j.bbrc.2020.11.083
  • Lim, K., Ng, L. F., & Liu, D. (2000). Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus Avian infectious bronchitis virus and characterization of the cleavage products. Journal of Virology, 74(4), 1674–1685. https://doi.org/10.1128/jvi.74.4.1674-1685.2000
  • Lobanov, M. Y., Bogatyreva, N., & Galzitskaya, O. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Magalhães, C. B., Riva, D. R., DePaula, L. J., Brando-Lima, A., Koatz, V. L. G., Leal-Cardoso, J. H., Zin, W. A., & Faffe, D. S. (1985). In vivo anti-inflammatory action of eugenol on lipopolysaccharide-induced lung injury. Journal of Applied Physiology, 108(4), 845–851.
  • Mitra, D., Verma, D., Mahakur, B., Kamboj, A., Srivastava, R., Gupta, S., Pandey, A., Arora, B., Pant, K., Panneerselvam, P., Ghosh, A., Barik, D. P., & Mohapatra, P. K. D. (2022). Molecular docking and simulation studies of natural compounds of Vitex negundo L. against papain-like protease (PLpro) of SARS CoV-2 (coronavirus) to conquer the pandemic situation in the world. Journal of Biomolecular Structure and Dynamics, 40(12), 5665–5686. https://doi.org/10.1080/07391102.2021.1873185
  • Moriyama, Y., Ohta, D., Hachiya, K., Mitsui, Y., & Takeda, K. (1996). Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: A comparative study of the two and one tryptophan (s) of bovine and human albumins. Journal of Protein Chemistry, 15(3), 265–272. https://doi.org/10.1007/BF01887115
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Osipiuk, J., Azizi, S.-A., Dvorkin, S., Endres, M., Jedrzejczak, R., Jones, K. A., Kang, S., Kathayat, R. S., Kim, Y., Lisnyak, V. G., Maki, S. L., Nicolaescu, V., Taylor, C. A., Tesar, C., Zhang, Y.-A., Zhou, Z., Randall, G., Michalska, K., Snyder, S. A., Dickinson, B. C., & Joachimiak, A. (2021). Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nature Communications, 12(1), 1–9. https://doi.org/10.1038/s41467-021-21060-3
  • Peters, T., Jr. (1995). All about albumin: Biochemistry, genetics, and medical applications. Academic Press.
  • Reynolds, J. A., Herbert, S., Polet, H., & Steinhardt, J. (1967). The binding of divers detergent anions to bovine serum albumin. Biochemistry, 6(3), 937–947. https://doi.org/10.1021/bi00855a038
  • Rutwick Surya, U., & Praveen, N. (2021). A molecular docking study of SARS-CoV-2 main protease against phytochemicals of Boerhavia diffusa Linn. for novel COVID-19 drug discovery. Virusdisease, 32(1), 46–54. https://doi.org/10.1007/s13337-021-00683-6
  • Shin, D., Mukherjee, R., Grewe, D., Bojkova, D., Baek, K., Bhattacharya, A., Schulz, L., Widera, M., Mehdipour, A. R., Tascher, G., Geurink, P. P., Wilhelm, A., van der Heden van Noort, G. J., Ovaa, H., Müller, S., Knobeloch, K.-P., Rajalingam, K., Schulman, B. A., Cinatl, J., … Dikic, I. (2020). Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature, 587(7835), 657–662. https://doi.org/10.1038/s41586-020-2601-5
  • Song, G., Yan, Q., & He, Y. (2005). Studies on interaction of norfloxacin, Cu2+, and DNA by spectral methods. Journal of Fluorescence, 15(5), 673–678. https://doi.org/10.1007/s10895-005-2974-8
  • Thapa, B., Beckett, D., Erickson, J., & Raghavachari, K. (2018). Theoretical study of protein–ligand interactions using the molecules-in-molecules fragmentation-based method. Journal of Chemical Theory and Computation, 14(10), 5143–5155. https://doi.org/10.1021/acs.jctc.8b00531
  • Tragoolpua, Y., & Jatisatienr, A. (2007). Anti‐herpes simplex virus activities of Eugenia caryophyllus (Spreng.) Bullock & SG Harrison and essential oil, eugenol. Phytotherapy Research, 21(12), 1153–1158. https://doi.org/10.1002/ptr.2226

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.