226
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

In silico approach towards polyphenols as targeting glucosamine-6-phosphate synthase for Candida albicans

ORCID Icon, , , , , & ORCID Icon show all
Pages 12038-12054 | Received 04 Jul 2022, Accepted 27 Dec 2022, Published online: 11 Jan 2023

References

  • Ezeokonkwo, M. A., Ogbonna, O. N., Okafor, S. N., Godwin-Nwakwasi, E. U., Ibeanu, F. N., & Okoro, U. C. (2017). Angular Phenozaxine Ethers as Potent Multi-microbial Targets Inhibitors: Design, Synthesis, and Molecular Docking Studies. Frontiers in Chemistry, 5, 107. https://doi.org/10.3389/fchem.2017.00107
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein − ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Abbasi, H., Fereidoonnezhad, M., & Mirveis, Z. (2022). Vilazodone-Tacrine hybrids as potential anti-Alzheimer agents: QSAR, molecular docking, and molecular dynamic (MD) simulation studies. Biointerface Research in Applied Chemistry 12(1), 588–607. https://doi.org/10.33263/BRIAC121.588607
  • Abel, R., Young, T., Farid, R., Berne, B. J., & Friesner, R. A. (2008). Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. Journal of the American Chemical Society, 130(9), 2817–2831. https://doi.org/10.1021/ja0771033
  • Adelusi, T. I., Abdul-Hammed, M., Ojo, E. M., Oyedele, Q. K., Boyenle, I. D., Adedotun, I. O., Olaoba, O. T., Folorunsho, A. A., & Kolawole, O. E. (2021). Molecular docking assessment of clinically approved antiviral drugs against Mpro, spike glycoprotein and angiotensin converting enzyme-2 revealed probable anti-SARS-CoV-2 potential. Tropical Journal of Natural Product Research, 5(4), 778–791.
  • Al-Nema, M., Gaurav, A., & Lee, V. S. (2020). Docking based screening and molecular dynamics simulations to identify potential selective PDE4B inhibitor. Heliyon, 6(9), e04856. https://doi.org/10.1016/j.heliyon.2020.e04856
  • Alzain, A. A., Ahmed, Z. A. M., Mahadi, M. A., Khairy, E. A., & Elbadwi, F. A. (2022). Identification of novel Plasmodium falciparum dihydroorotate dehydrogenase inhibitors for malaria using in silico studies. Scientific African, 16, e01214. https://doi.org/10.1016/j.sciaf.2022.e01214
  • Aqeel, M. T., Khan, A-u., Ashraf, Z., Khan, S., Arif, M., & Nisar-Ur-Rahman. (2022). In silico approach for the development of phenolic derivatives as potential anti-angiogenic agents against lysyl oxidase-like 2 enzymes. Future Journal of Pharmaceutical Sciences, 8(1), 32. https://doi.org/10.1186/s43094-022-00422-8
  • Arokiyaraj, S., Stalin, A., & Shin, H. (2019). Anti-methanogenic effect of rhubarb (Rheum spp.)—An in silico docking studies on methyl-coenzyme M reductase (MCR). Saudi Journal of Biological Sciences, 26(7), 1458–1462. https://doi.org/10.1016/j.sjbs.2019.06.008
  • Ban, T., Ohue, M., & Akiyama, Y. (2018). Multiple grid arrangement improves ligand docking with unknown binding sites: Application to the inverse docking problem. Computational Biology and Chemistry, 73, 139–146. https://doi.org/10.1016/j.compbiolchem.2018.02.008
  • Banerjee, J., & Karati, D. (2022). In-silico pharmacology against cancer of a novel phytosterol Dendrosterone isolated from plant Dendrobium ochreatum. Pharmacological Research - Modern Chinese Medicine, 4, 100149–102667. https://doi.org/10.1016/j.prmcm.2022.100149
  • Banerjee, K., Gupta, U., Gupta, S., Wadhwa, G., Gabrani, R., Sharma, S. K., & Jain, C. K. (2011). Molecular docking of glucosamine-6-phosphate synthase in Rhizopus oryzae. Bioinformation, 7(6), 285–290. https://doi.org/10.6026/007/97320630007285
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Birnbaum, J. E. (1990). Pharmacology of the allylamines. Journal of the American Academy of Dermatology, 23(4), 782–785. https://doi.org/10.1016/0190-9622(90)70288-S
  • Bongomin, F., Gago, S., Oladele, R. O., & Denning, D. W. (2017). Global and multi-national prevalence of fungal diseases-estimate precision. Journal of Fungi, 3(4), 57. https://doi.org/10.3390/jof3040057
  • Bow, E. J., Loewen, R., Cheang, M. S., Shore, T. B., Rubinger, M., & Schacter, B. (1997). Cytotoxic therapy-induced D-xylose malabsorption and invasive infection during remission-induction therapy for acute myeloid leukemia in adults. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 15(6), 2254–2261. https://doi.org/10.1200/JCO.1997.15.6.2254
  • Brandolini, A., Castoldi, P., Plizzari, L., & Hidalgo, A. (2013). Phenolic acids composition, total polyphenols content and antioxidant activity of Triticum monococcum, Triticum turgidum and Triticum aestivum: A two-years evaluation. Journal of Cereal Science, 58(1), 123–131. https://doi.org/10.1016/j.jcs.2013.03.011
  • Camboim Rockett, F., de Oliveira Schmidt, H., Schmidt, L., Rodrigues, E., Tischer, B., Ruffo de Oliveira, V., Lima da Silva, V., Rossini Augusti, P., Hickmann Flôres, S., & Rios, A. (2020). Phenolic compounds and antioxidant activity in vitro and in vivo of Butia and Opuntia fruits. Food Research International (Ottawa, Ont.), 137, 109740. https://doi.org/10.1016/j.foodres.2020.109740
  • Chaffin, W. L., López-Ribot, J. L., Casanova, M., Gozalbo, D., & Martínez, J. P. (1998). Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiology and Molecular Biology Reviews, 62(1), 130–180. https://doi.org/10.1128/MMBR.62.1.130-180.1998
  • Chavan, B. B., Sawant, V., Borkar, R. M., Ragampeta, S., & Talluri, M. K. (2019). Isolation and structural characterization of degradation products of afatinib dimaleate by LC-Q-TOF/MS/MS and NMR: cytotoxicity evaluation of afatinib and isolated degradation products. Journal of Pharmaceutical and Biomedical Analysis, 166, 139–146. https://doi.org/10.1016/j.jpba.2019.01.004
  • Chen, C. Y., Yi, L., Jin, X., Mi, M. T., Zhang, T., Ling, W. H., & Yu, B. (2010). Delphinidin attenuates stress injury induced by oxidized low-density lipoprotein in human umbilical vein endothelial cells. Chemico-Biological Interactions, 183(1), 105–112. https://doi.org/10.1016/j.cbi.2009.09.024
  • Chen, X., Zhang, Z., Chen, Z., Li, Y., Su, S., & Sun, S. (2020). Potential antifungal targets based on glucose metabolism pathways of Candida albicans. Frontiers in Microbiology, 11, 296. https://doi.org/10.3389/fmicb.2020.00296
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). admet SAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. https://doi.org/10.1021/ci300367a
  • Daneman, R., & Prat, A. (2015). The blood-brain barrier. Cold Spring Harbor Perspectives in Biology, 7(1), a020412. doi: https://doi.org/10.1101/cshperspect.a020412.
  • Domínguez-Rodríguez, G., Marina, M. L., & Plaza, M. (2022). In vitro assessment of the bioavailability of bioactive non-extractable polyphenols obtained by pressurized liquid extraction combined with enzymatic-assisted extraction from sweet cherry (Prunus avium L.) pomace. Food Chemistry, 385, 132688–130308. https://doi.org/10.1016/j.foodchem.2022.132688
  • Donlin, M. J., & Meyers, M. J. (2022). Repurposing and optimization of drugs for discovery of novel antifungals. Drug Discovery Today, 27(7), 2008–2014. https://doi.org/10.1016/j.drudis.2022.04.021
  • Eissenberg, L. G., Goldman, W. E., & Schlesinger, P. H. (1993). Histoplasma capsulatum modulates the acidification of phagolysosomes. The Journal of Experimental Medicine, 177(6), 1605–1611. https://doi.org/10.1084/jem.177.6.1605
  • Elewski, B. E. (1993). Mechanisms of action of systemic antifungal agents. Journal of the American Academy of Dermatology, 28(5 Pt 1), S28–S34. https://doi.org/10.1016/S0190-9622(09)80305-8
  • Elmeliegy, M., Vourvahis, M., Guo, C., & Wang, D. D. (2020). Effect of P-glycoprotein (P-gp) inducers on exposure of P-gp substrates: Review of clinical drug-drug interaction studies. Clinical Pharmacokinetics, 59(6), 699–714. doi: https://doi.org/10.1007/s40262-020-00867
  • Finch, A., & Pillans, P. (2014). P-glycoprotein and its role in drug–drug interactions. Australian Prescriber, 37(4), 137–139. https://doi.org/10.18773/austprescr.2014.050
  • Friesner, R., Banks, J., Murphy, R., Halgren, T., Klicic, J., Mainz, D., Repasky, M., Knoll, E., Shelley, M., Perry, J., Shaw, D., Francis, P., & Shenkin, P. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Garcia-Sosa, A., & Cavasotto, C. (2015). In silico drug discovery and design: Theory, methods, challenges, and applications. https://doi.org/10.1201/b18799
  • Ghannoum, M. A., & Rice, L. B. (1999). Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clinical Microbiology Reviews, 12(4), 501–517. https://doi.org/10.1128/CMR.12.4.501
  • Gostinčar, C., Grube, M., & Gunde-Cimerman, N. (2011). Evolution of fungal pathogens in domestic environments? Fungal Biology, 115(10), 1008–1018. https://doi.org/10.1016/j.funbio.2011.03.004
  • Goszcz, K., Deakin, S. J., Duthie, G. G., Stewart, D., & Megson, I. L. (2017). Bioavailable concentrations of delphinidin and its metabolite, gallic acid, induce antioxidant protection associated with increased intracellular glutathione in cultured endothelial cells. Oxid Med Cell Longev, 2017, 1–17. https://doi.org/10.1155/2017/9260701
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Hamauzu, Y., Takedachi, N., Miyasaka, R., & Makabe, H. (2010). Heat treatment of Chinese quince polyphenols increases rat plasma levels of protocatechuic and vanillic acids. Food Chemistry, 118(3), 757–763. https://doi.org/10.1016/j.foodchem.2009.05.054
  • Han, X., Zhu, X., Hong, Z., Wei, L., Ren, Y., Wan, F., Zhu, S., Peng, H., Guo, L., Rao, L., Feng, L., & Wan, J. (2017). Structure-based rational design of novel inhibitors against fructose-1,6-bisphosphate aldolase from Candida albicans. Journal of Chemical Information and Modeling, 57(6), 1426–1438. https://doi.org/10.1021/acs.jcim.6b00763
  • Hawksworth, D. L., & Lücking, R. (2017). Fungal diversity revisited: 2.2 to 3.8 million species. The Fungal Kingdom. Microbiology Spectrum, 5, 79–95.
  • Hecht, J. (2020). Science: Animals and fungi closer than anyone expected. New Scientist, 6–18.
  • Jabir, N. R., Tabish Rehman, M., Alsolami, K., Shakil, S., Zughaibi, T. A., Alserihi, R. F., Shahnawaz Khan, M., AlAjmi, M. F., & Tabrez, S. (2021). Concatenation of molecular docking and molecular simulation of BACE-1, γ-secretase targeted ligands: in pursuit of Alzheimer’s treatment. Annals of Medicine, 53(1), 2332–2344. https://doi.org/10.1080/07853890.2021.2009124
  • Jacobson, M. P., Friesner, R. A., Xiang, Z., & Honig, B. (2002). On the role of the crystal environment in determining protein side-chain conformations. Journal of Molecular Biology, 320(3), 597–608. https://doi.org/10.1016/S0022-2836(02)00470-9
  • Janiak, A. M., Hoffmann, M., Milewska, M. J., & Milewski, S. (2003). Hydrophobic derivatives of 2-amino-2-deoxy-D-glucitol-6-phosphate: A new type of D-glucosamine-6-phosphate synthase inhibitors with antifungal action. Bioorganic & Medicinal Chemistry, 11(8), 1653–1662. https://doi.org/10.1016/s0968-0896(03)00049-x
  • Kainz, K., Bauer, M., Madeo, F., & Carmona-Gutierrez, D. (2020). Fungal infections in humans: The silent crisis. Microbial Cell (Graz, Austria), 7(6), 143–145. https://doi.org/10.15698/mic2020.06.718
  • Kandhare, A., Bodhankar, S., Singh, V., Mohan, V., & Thakurdesai, P. (2013). Anti-asthmatic effects of type-A procyanidine polyphenols from cinnamon bark in ovalbumin-induced airway hyperresponsiveness in laboratory animals. Biomedicine & Aging Pathology, 3(1), 23–30. https://doi.org/10.1016/j.biomag.2013.01.003
  • Leloir, L. F., & Cardini, C. E. (1956). Enzymes acting on glucosamine phosphates BiochimBiophys. Biochimica et Biophysica Acta, 20(1), 33–42. https://doi.org/10.1016/0006-3002(56)90259-1
  • Lengauer. (2002). Bioinformatics. From genomes to drugs. Wiley-VCH.
  • Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins: Structure, Function, and Bioinformatics, 79(10), 2794–2812. https://doi.org/10.1002/prot.23106
  • Li, J., Wang, S. P., Wang, Y. Q., Shi, L., Zhang, Z. K., Dong, F., Li, H. R., Zhang, J. Y., & Man, Y. Q. (2021). Comparative metabolism study on chlorogenic acid, cryptochlorogenic acid and neochlorogenic acid using UHPLC-Q-TOF MS coupled with network pharmacology. Chinese Journal of Natural Medicines, 19(3), 212–224. https://doi.org/10.1016/S1875-5364(21)60023-7
  • Li, Z., Zhu, J., Wan, Z., Li, G., Chen, L., & Guo, Y. (2021). Theaflavin ameliorates renal ischemia/reperfusion injury by activating the Nrf2 signalling pathway in vivo and in vitro. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 134, 111097. https://doi.org/10.1016/j.biopha.2020.111097
  • Lyne, P. D., Lamb, M. L., & Saeh, J. C. (2006). Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. Journal of Medicinal Chemistry, 49(16), 4805–4808. https://doi.org/10.1021/jm060522a
  • M. J., Palmer, X., Deng, S., Watts, G., Krilov, A., Gerasyuto, S., Kokkonda, F., El Mazouni, J., White, K. L., White, J., Striepen, J., Bath, K. A., Schindler, T., Yeo, D. M., Shackleford, S., Mok, I., Deni, A., Lawong, A., Huang, G., Chen, P. K., Rathod, … Phillips. (2021). Potent antimalarials with development potential identified by structure-guided computational optimization of a pyrrole-based dihydroorotate dehydrogenase inhibitor series. Journal of Medicinal Chemistry, 64(9), 6085–6136. https://doi.org/10.1021/acs.jmedchem.1c00173
  • Ma, G., & Chen, Y. (2020). Polyphenol supplementation benefits human health via gut microbiota: A systematic review via meta-analysis. Journal of Functional Foods, 66, 103829. https://doi.org/10.1016/j.jff.2020.103829
  • Matyash, V., Entchev, E. V., Mende, F., Wilsch-Bräuninger, M., Thiele, C., Schmidt, A. W., Knölker, H. J., Ward, S., & Kurzchalia, T. V. (2004). Sterol-derived hormone(s) controls. https://doi.org/10.1371/journal.pbio.0020280
  • Maurya, I., Semwal, R., & Semwal, D. (2020). Combination therapy against human infections caused by Candida species. https://doi.org/10.1016/B978-0-12-820576-1.00004-7
  • Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4(2), 119–128. https://doi.org/10.4161/viru.22913
  • Milewski, S., Chmara, H., & Borowski, E. (1986). Antibiotic tetaine—A selective inhibitor of chitin and mannoprotein biosynthesis in Candida albicans. Archives of Microbiology, 145(3), 234–240. https://doi.org/10.1007/BF00443651
  • Milewski, S., Chmara, H., Andruszkiewicz, R., & Borowski, E. (1992). N3-haloacetyl derivatives of l-2,3-diaminopropanoic acid: Novel inactivators of glucosamine-6-phosphate synthase, Biochemical et Biophysical. Acta (BBA)—General Subjects, 1115(3), 225–229. https://doi.org/10.1016/0304-4165(92)90058-3
  • Milewski, S., Chmara, H., Andruszkiewicz, R., Borowski, E., Zaremba, M., & Borowski, J. (1988). Antifungal peptides with novel specific inhibitors of glucosamine 6-phosphate synthase. Drugs under Experimental and Clinical Research, 14(7), 461–465.
  • Mora, J., Cuesta, S., Belhassan, A., Guillermo, S., Lakhlifi, T., Bouachrine, M., Peña, C., Gerli, L., & Mendoza-Huizar, L. (2022). Molecular docking and molecular dynamics studies of SARS-CoV-2 inhibitors: Crocin, digitoxigenin, beta- eudesmol and favipiravir: Comparative study. Biointerface Research in Applied Chemistry, 12, 5591–5600. https://doi.org/10.33263/BRIAC124.55915600
  • Nagy, G. L., Varga, T., Csernetics, A., & Virágh, M. (2020). Fungi took a unique evolutionary route to multicellularity: Seven key challenges for fungal multicellular life. Fungal Biology Reviews, 34(4), 151–169. https://doi.org/10.1016/j.fbr.2020.07.002
  • Nett, J. E., & Andes, D. R. (2016). Antifungal agents: Spectrum of activity, pharmacology, and clinical indications. Infectious Disease Clinics of North America, 30(1), 51–83. https://doi.org/10.1016/j.idc.2015.10.012 Epub 2015 Dec 29. PMID: 26739608.
  • Onishi, J., Meinz, M., Thompson, J., Curotto, J., Dreikorn, S., Rosenbach, M., Douglas, C., Abruzzo, G., Flattery, A., Kong, L., Cabello, A., Vicente, F., Pelaez, F., Diez, M. T., Martin, I., Bills, G., Giacobbe, R., Dombrowski, A., Schwartz, R., … Kurtz, M. B. (2000). Discovery of novel antifungal (1,3)-β-d-glucan synthase inhibitors. Antimicrobial Agents and Chemotherapy, 44(2), 368–377. https://doi.org/10.1128/AAC.44.2.368-377.2000
  • Osakwe, O. (2016). The significance of discovery screening and structure optimization studies. Social Aspects of Drug Discovery, Development and Commercialization, 109–128
  • Osamudiamen, P. M., Oluremi, B. B., Oderinlo, O. O., & Aiyelaagbe, O. O. (2020). Trans-Resveratrol, Piceatannol and Gallic acid: Potent polyphenols isolated from Mezoneuron benthamianum effective as anticaries, antioxidant and cytotoxic agents. Scientific African, 7, e00244. https://doi.org/10.1016/j.sciaf.2019.e00244
  • Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5), 270–278. https://doi.org/10.4161/oxim.2.5.9498
  • Pappas, P. G., Rex, J. H., Lee, J., Hamill, R. J., Larsen, R. A., Powderly, W., Kauffman, C. A., Hyslop, N., Mangino, J. E., Chapman, S., Horowitz, H. W., Edwards, J. E., & Dismukes, W. E. (2003). A prospective observational study of candidemia: Epidemiology, therapy and influences on mortality in hospitalized adult and pediatric patients. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 37(5), 634–643. https://doi.org/10.1086/376906
  • Pawlak, D., Schielmann, M., Wojciechowski, M., & Andruszkiewicz, R. (2016). Synthesis and biological activity of novel ester derivatives of N3-(4-metoxyfumaroyl)-(S)-2,3-diaminopropanoic acid containing amide and keto function as inhibitors of glucosamine-6-phosphate synthase. Bioorganic & Medicinal Chemistry Letters, 26(15), 3586–3589. https://doi.org/10.1016/j.bmcl.2016.06.016
  • Pokharkar, O., Lakshmanan, H., Zyryanov, G., & Tsurkan, M. (2022). In silico evaluation of antifungal compounds from marine sponges against COVID-19-associated mucormycosis. Mar. Drugs, 20(3), 215. https://doi.org/10.3390/md20030215
  • Prasad, R., Shah, A. H., & Rawal, M. K. (2016). Antifungals: Mechanism of action and drug resistance. Advances in Experimental Medicine and Biology, 892, 327–349. https://doi.org/10.1007/978-3-319-25304-6_14
  • Pu, Y., He, X., Chen, L., Wang, H., Ma, Y., & Jiang, W. (2022). Apple polyphenols attenuate the binding ability of angiotensin converting enzyme 2 to viral proteins: Computer simulation and in vitro experiments. Food Bioscience, 50(Part A), 102090. https://doi.org/10.1016/j.fbio.2022.102090
  • R.C.S.B. (n.d). PDB 7KZ4: Crystal structure of Plasmodium falciparum dihydroorotate dehydrogenase bound with Inhibitor DSM705 (N-(1-(1H-1,2,4-triazol-3-yl) ethyl)-3-methyl-4-(1-(6-(trifluoromethyl) pyridin-3-yl) cyclopropyl)-1H-pyrrole-2-carboxamide). Retrieved December 25, 2021, from https://www.rcsb.org/structure/7kz4.
  • Raczynska, J., Olchowy, J., Konariev, P. V., Svergun, D. I., Milewski, S., & Rypniewski, W. (2007). The crystal and solution studies of glucosamine-6-phosphate synthase from Candida albicans. Journal of Molecular Biology, 372(3), 672–688. https://doi.org/10.1016/j.jmb.2007.07.002
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Sbai, A., Bouachrine, M., Lakhlifi, T., Bouamrane, S., Khaldan, A., Hajji, H., El-Mernissi, R., Maghat, H., & Ajana, M. A. (2022). 3D-QSAR, molecular docking, molecular dynamic simulation, and ADMET study of bioactive compounds against Candida albicans. Moroccan Journal of Chemistry, 10(3), 523–541. https://doi.org/10.48317/IMIST.PRSM/morjchem-v10i3.33141.
  • Sidhu, P. K., Landoni, M. F., Aliabadi, M. H. S., Toutain, P. L., & Lees, P. (2011). Pharmacokinetic and pharmacodynamic modelling of marbofloxacin administered alone and in combination with tolfenamic acid in calves. Journal of Veterinary Pharmacology and Therapeutics, 34(4), 376–387. 101111/j.1365-2885.2010. 01247.x https://doi.org/10.1111/j.1365-2885.2010.01247.x
  • Taqvi, S., Ahmed Bhat, E., Sajjad, N., Sabir, J. S. M., Qureshi, A., Rather, I. A., & Rehman, S. (2021). Protective effect of vanillic acid in hydrogen peroxide-induced oxidative stress in D. Mel-2 cell line. Saudi Journal of Biological Sciences, 28(3), 1795–1800. https://doi.org/10.1016/j.sjbs.2020.12.023
  • Teplyakov, A., Obmolova, G., Badet-Denisot, M. A., & Badet, B. (1999). The mechanism of sugar phosphate isomerization by glucosamine 6-phosphate synthase. Protein Science: A Publication of the Protein Society, 8(3), 596–602. https://doi.org/10.1110/ps.8.3.596
  • Whittaker. (2004). The role of bioinformatics in target validation. Drug discovery to-clinical trial registration: A statement from the International Committee of Medical Journal Editors. Medical Journal of Australia, 181, 293–294.
  • Williamson, G., & Clifford, M. N. (2017). Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochemical Pharmacology, 139, 24–39. https://doi.org/10.1016/j.bcp.2017.03.012
  • Wojciechowski, M., Milewski, S., Mazerski, J., & Borowski, E. (2005). Glucosamine-6-phosphate synthase, a novel target for antifungal agents. Molecular modelling studies in drug design. Acta Biochimica Polonica, 52(3), 647–653. https://doi.org/10.18388/abp.2005_3425
  • Yeşilkaya, A., Azap, Ö., Aydın, M., & Akçil Ok, M. (2017). Epidemiology, species distribution, clinical characteristics and mortality of candidemia in a tertiary care university hospital in Turkey, 2007–2014. Mycoses, 60(7), 433–439. https://doi.org/10.1111/myc.12618
  • Zhu, K., Shirts, M. R., & Friesner, R. A. (2007). Improved methods for side chain and loop predictions via the protein local optimization program: Variable dielectric model for implicitly improving the treatment of polarization effects. Journal of Chemical Theory and Computation, 3(6), 2108–2119. https://doi.org/10.1021/ct700166f

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.