321
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Computational studies on potential small molecule inhibitors of Leishmania pteridine reductase 1

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 12128-12141 | Received 08 Sep 2022, Accepted 01 Jan 2023, Published online: 12 Jan 2023

References

  • Boobis, A., Gundert-Remy, U., Kremers, P., Macheras, P., & Pelkonen, O. (2002). In silico prediction of ADME and pharmacokinetics: Report of an expert meeting organised by COST B15. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 17(4-5), 183–193.
  • Borquaye, L. S., Gasu, E. N., Ampomah, G. B., Kyei, L. K., Amarh, M. A., & Mensah, C. N. (2020). Alkaloids from Cryptolepis sanguinolenta as potential inhibitors of SARS-CoV-2 viral Proteins: An in silico study. Biomed Research International. 2020, e5324560.
  • Bronowska, A. K. (2011). Thermodynamics of ligand-protein interactions: implications for molecular design. In Thermodynamics-interaction studies-solids, liquids and gases. IntechOpen.
  • Cavazzuti, A., Paglietti, G., Hunter, W. N., Gamarro, F., Piras, S., Loriga, M., Allecca, S., Corona, P., McLuskey, K., Tulloch, L., Gibellini, F., Ferrari, S., & Costi, M. P. (2008). Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 1448–1453.
  • Crentsil, J. A., Yamthe, L. R. T., Anibea, B. Z., Broni, E., Kwofie, S. K., Tetteh, J. K. A., & Osei-Safo, D. (2020). Leishmanicidal potential of hardwickiic acid isolated from croton sylvaticus. Frontiers in Pharmacology, 11, 753.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Durán-Iturbide, N. A., Díaz-Eufracio, B. I., & Medina-Franco, J. L. (2020). In silico ADME/Tox profiling of natural products: A focus on BIOFACQUIM. ACS Omega, 5(26), 16076–16084. https://doi.org/10.1021/acsomega.0c01581
  • Et-Touys, A., Bouyahya, A., Fellah, H., Mniouil, M., El Boury, H., Dakka, N., Sadak, A., & Bakri, Y. (2017). Antileishmanial activity of medicinal plants from Africa: a review. Asian Pacific Journal of Tropical Disease, 7(12), 826–840. https://doi.org/10.12980/apjtd.7.2017D7-215
  • Gervazoni, L. F. O., Barcellos, G. B., Ferreira-Paes, T., & Almeida-Amaral, E. E. (2020). Use of natural products in Leishmaniasis chemotherapy: An overview. Frontiers in Chemistry, 8, 579891. https://www.frontiersin.org/articles/10.3389/fchem.2020.579891/full
  • Gourley, D. G., Schüttelkopf, A. W., Leonard, G. A., Luba, J., Hardy, L. W., Beverley, S. M., & Hunter, W. N. (2001). Pteridine reductase mechanism correlates pterin metabolism with drug resistance in trypanosomatid parasites. Nature Structural Biology, 8(6), 521–525.
  • Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., Liu, G., & Tang, Y. (2019). ADMET-score – A comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 10(1), 148–157.
  • Hardy, L. W., Matthews, W., Nare, B., & Beverley, S. M. (1997). Biochemical and genetic tests for inhibitors of Leishmania pteridine pathways. Experimental Parasitology, 87(3), 158–170.
  • Hospital, A., Goñi, J. R., Orozco, M., & Gelpí, J. L. (2015). Molecular dynamics simulations: Advances and applications. Advances and Applications in Bioinformatics and Chemistry, 8, 37.
  • Huang, J., & MacKerell, A. D. Jr(2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Hughes, J. P., Rees, S., Kalindjian, S. B., & Philpott, K. L. (2011). Principles of early drug discovery. British Journal of Pharmacology, 162(6), 1239–1249. https://doi.org/10.1111/j.1476-5381.2010.01127.x
  • Justino, G. C., Nascimento, C. P., & Justino, M. C. (2021). Molecular dynamics simulations and analysis for bioinformatics undergraduate students. Biochemistry and Molecular Biology Education: A Bimonthly Publication of the International Union of Biochemistry and Molecular Biology, 49(4), 570–582. https://doi.org/10.1002/bmb.21512
  • Karplus, M., & Kuriyan, J. (2005). Molecular dynamics and protein function. Proceedings of the National Academy of Sciences of the United States of America, 102(19), 6679–6685. https://doi.org/10.1073/pnas.0408930102
  • Kimuda, M. P., Laming, D., Hoppe, H. C., & Tastan Bishop, Ö. (2019). Identification of novel potential inhibitors of pteridine reductase 1 in Trypanosoma brucei via computational structure-based approaches and in vitro inhibition assays. Molecules, 24(1), 142. https://doi.org/10.3390/molecules24010142
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962.
  • Kutzner, C., Páll, S., Fechner, M., Esztermann, A., de Groot, B. L., & Grubmüller, H. (2015). Best bang for your buck: GPU nodes for GROMACS biomolecular simulations. Journal of Computational Chemistry, 36(26), 1990–2008. https://doi.org/10.1002/jcc.24030
  • Kyei, L. K., Gasu, E. N., Ampomah, G. B., Mensah, J. O., & Borquaye, L. S. (2022). An in silico study of the interactions of alkaloids from Cryptolepis sanguinolenta with Plasmodium falciparum dihydrofolate reductase and dihydroorotate dehydrogenase. Journal of Chemistry. 2022, e5314179–26. https://doi.org/10.1155/2022/5314179
  • Leite, F. H. A., Froes, T. Q., da Silva, S. G., de Souza, E. I. M., Vital-Fujii, D. G., Trossini, G. H. G., Pita, S. S. d R., & Castilho, M. S. (2017). An integrated approach towards the discovery of novel non-nucleoside Leishmania major pteridine reductase 1 inhibitors. European Journal of Medicinal Chemistry, 132, 322–332.
  • Li, H., Robertson, A. D., & Jensen, J. H. (2005). Very fast empirical prediction and rationalization of protein pKa values. Proteins: Structure, Function, and Bioinformatics, 61(4), 704–721. https://doi.org/10.1002/prot.20660
  • Mahiou, V., Roblot, F., Hocquemiller, R., Cavé, A., Barrios, A. A., & Fournet, A. (1995). Piperogalin, a new prenylated diphenol from Peperomia galioides. Journal of Natural Products, 58(2), 324–328.
  • Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PloS One, 10(3), e0119264.
  • McLuskey, K., Gibellini, F., Carvalho, P., Avery, M. A., & Hunter, W. N. (2004). Inhibition of Leishmania major pteridine reductase by 2,4,6-triaminoquinazoline: Structure of the NADPH ternary complex. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 10), 1780–1785.
  • Mensah, J. O., Ampomah, G. B., Gasu, E. N., Adomako, A. K., Menkah, E. S., & Borquaye, L. S. (2022). Allosteric modulation of the main protease (MPro) of SARS-CoV-2 by casticin—insights from molecular dynamics simulations. Chemistry Africa, 5(5), 1305-1320. https://doi.org/10.1007/s42250-022-00411-7
  • Mohapatra, S., Prasad, A., Haque, F., Ray, S., De, B., & Ray, S. S. (2015). In silico investigation of black tea components on α-amylase, α-glucosidase and lipase. Journal of Applied Pharmaceutical Science 5(12), 042–047.
  • Monica, L., Lauria, G., Bono, A., & Martorana, A. (2021). A. off-target-based design of selective HIV-1 PROTEASE inhibitors. International Journal of Molecular Sciences, 22(11), 6070. https://doi.org/10.3390/ijms22116070
  • Nare, B., Hardy, L. W., & Beverley, S. M. (1997). The roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major. The Journal of Biological Chemistry, 272(21), 13883–13891. https://doi.org/10.1074/jbc.272.21.13883
  • Ouellette, M., Drummelsmith, J., El Fadili, A., Kündig, C., Richard, D., & Roy, G. (2002). Pterin transport and metabolism in Leishmania and related trypanosomatid parasites. International Journal for Parasitology, 32(4), 385–398. https://doi.org/10.1016/s0020-7519(01)00346-0
  • Patil, R., Das, S., Stanley, A., Yadav, L., Sudhakar, A., & Varma, A. K. (2010). Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PloS One, 5(8), e12029. https://doi.org/10.1371/journal.pone.0012029
  • Ruiz-Postigo, J. A., Jain, S., Maia-Elkhoury, A. M. A. N., Valadas, S., Warusavithana, S., Osman, M., et al. (2021). Global Leishmaniasis surveillance: 2019–2020, a baseline for the 2030 roadmap/Surveillance mondiale de la leishmaniose: 2019–2020, une periode de reference pour la feuille de route a l’horizon 2030. Weekly Epidemiological Record, 96(35), 401–420.
  • Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815.
  • Staerk, D., Lemmich, E., Christensen, J., Kharazmi, A., Olsen, C. E., & Jaroszewski, J. W. (2000). Leishmanicidal, antiplasmodial and cytotoxic activity of indole alkaloids from Corynanthe pachyceras. Planta Medica, 66(6), 531–536.
  • Stockdale, T. P., Challinor, V. L., Lehmann, R. P., De Voss, J. J., & Blanchfield, J. T. (2019). Caco-2 monolayer permeability and stability of Chamaelirium luteum (false unicorn) open-chain steroidal saponins. ACS Omega. 4(4), 7658–7666. https://doi.org/10.1021/acsomega.9b00496
  • Tulloch, L. B., Martini, V. P., Iulek, J., Huggan, J. K., Lee, J. H., Gibson, C. L., Smith, T. K., Suckling, C. J., & Hunter, W. N. (2010). Structure-based design of pteridine reductase inhibitors targeting African sleeping sickness and the Leishmaniases. Journal of Medicinal Chemistry, 53(1), 221–229.
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2001). Antechamber: An accessory software package for molecular mechanical calculations. Journal of the American Chemical Society, 222, U403.
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Zikri, A. T., Pranowo, H. D., & Haryadi, W. (2020). Stability, hydrogen bond occupancy analysis and binding free energy calculation from flavonol docked in DAPK1 active site using molecular dynamic simulation approaches. Indonesian Journal of Chemistry, 21(2), 383–390. https://doi.org/10.22146/ijc.56087

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.