254
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Colchicine as potential inhibitor targeting MMP-9, NOX2 and TGF-β1 in myocardial infarction: a combination of docking and molecular dynamic simulation study

ORCID Icon, , , &
Pages 12214-12224 | Received 08 Sep 2022, Accepted 01 Jan 2023, Published online: 13 Jan 2023

References

  • Abdollahpour, N., Soheili, V., & Reza, M. (2015). Investigation of the interaction between human serum albumin and two drugs as binary and ternary systems. European Journal of Drug Metabolism and Pharmacokinetics. [Preprint]. https://doi.org/10.1007/s13318-015-0297-y
  • Álvarez-Álvarez, M. M., Zanetti, D., Carreras-Torres, R., Moral, P., & Athanasiadis, G. (2017). A survey of sub-Saharan gene flow into the Mediterranean at risk loci for coronary artery disease. European Journal of Human Genetics, 25(4), 472–476. https://doi.org/10.1038/ejhg.2016.200
  • Beigoli, S., Sharifi Rad, A., Askari, A., Assaran Darban, R., & Chamani, J. (2019). Isothermal titration calorimetry and stopped flow circular dichroism investigations of the interaction between lomefloxacin and human serum albumin in the presence of amino acids. Journal of Biomolecular Structure and Dynamics, 37(9), 2265–2282. https://doi.org/10.1080/07391102.2018.1491421
  • Berezin, A. E., & Berezin, A. A. (2020). Adverse cardiac remodelling after acute myocardial infarction: Old and new biomarkers. Disease Markers, 2020, 1215802. https://doi.org/10.1155/2020/1215802
  • Bostan, M. M., et al. (2020). Post-myocardial infarction ventricular remodeling biomarkers—The key link between pathophysiology and clinic. Biomolecules, 1–22. https://doi.org/10.3390/biom10111587
  • Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/jcc.21287
  • Caporizzo, M. A., Chen, C. Y., & Prosser, B. L. (2019). Cardiac microtubules in health and heart disease. Experimental Biology and Medicine, 244(15), 1255–1272. https://doi.org/10.1177/1535370219868960
  • Chancey, A. L., Brower, G. L., Peterson, J. T., & Janicki, J. S. (2002). Effects of matrix metalloproteinase inhibition on ventricular remodeling due to volume overload. Circulation, 105(16), 1983–1988. https://doi.org/10.1161/01.CIR.0000014686.73212.DA
  • Christodoulidis, G., Vittorio, T. J., Fudim, M., Lerakis, S., & Kosmas, C. E. (2014). Inflammation in coronary artery disease. Cardiology in Review, 22(6), 279–288. https://doi.org/10.1097/CRD.0000000000000006
  • Crobu, F., Palumbo, L., Franco, E., Bergerone, S., Carturan, S., Guarrera, S., Frea, S., Trevi, G., Piazza, A., & Matullo, G. (2008). Role of TGF-β1 haplotypes in the occurrence of myocardial infarction in young Italian patients. BMC Medical Genetics, 9, 13. https://doi.org/10.1186/1471-2350-9-13
  • da Costa, A. W. F., do Carmo Neto, J. R., Braga, Y. L. L., Silva, B. A., Lamounier, A. B., Silva, B. O., dos Reis, M. A., de Oliveira, F. A., Celes, M. R. N., & Machado, J. R. (2019). Cardiac chagas disease: MMPs, TIMPs, galectins, and TGF- β as tissue remodelling players. Disease Markers. Hindawi Limited, 2019, 1–10. https://doi.org/10.1155/2019/3632906
  • Dareini, M., Amiri Tehranizadeh, Z., Marjani, N., Taheri, R., Aslani-Firoozabadi, S., Talebi, A., NayebZadeh Eidgahi, N., Saberi, M. R., & Chamani, J. (2020). A novel view of the separate and simultaneous binding effects of docetaxel and anastrozole with calf thymus DNA: Experimental and in silico approaches. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 228, 117528. https://doi.org/10.1016/j.saa.2019.117528
  • Drum, B. M. L., Yuan, C., Li, L., Liu, Q., Wordeman, L., & Santana, L. F. (2016). Oxidative stress decreases microtubule growth and stability in ventricular myocytes. Journal of Molecular and Cellular Cardiology, 93, 32–43. https://doi.org/10.1016/j.yjmcc.2016.02.012
  • Ellison, G. M., Waring, C. D., Vicinanza, C., & Torella, D. (2012). Physiological cardiac remodelling in response to endurance exercise training: Cellular and molecular mechanisms. Heart, 98(1), 5–10. https://doi.org/10.1136/heartjnl-2011-300639
  • GBD. (2013). Mortality and causes of death collaborators (2015) ‘Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013’: A systematic analysis for the Global Burden of Disease Study 2013. Lancet (London, England), 385(9963), 117–171. https://doi.org/10.1016/S0140-6736(14)61682-2
  • Halade, G. v., Jin, Y. F., & Lindsey, M. L. (2013). Matrix metalloproteinase (MMP)-9: A proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacology & Therapeutics, 139(1), 32–40. https://doi.org/10.1016/j.pharmthera.2013.03.009
  • Han, A., Lu, Y., Zheng, Q., Zhang, J., Zhao, Y., Zhao, M., & Cui, X. (2018). Qiliqiangxin attenuates cardiac remodeling via inhibition of TGF-β1/Smad3 and NF-κB signaling pathways in a rat model of myocardial infarction. Cellular Physiology and Biochemistry, 45(5), 1797–1806. https://doi.org/10.1159/000487871
  • Hanania, R., Sun, H. S., Xu, K., Pustylnik, S., Jeganathan, S., & Harrison, R. E. (2012). Classically activated macrophages use stable microtubules for matrix metalloproteinase-9 (MMP-9) secretion. The Journal of Biological Chemistry, 287(11), 8468–8483. https://doi.org/10.1074/jbc.M111.290676
  • Hanna, A., & Frangogiannis, N. G. (2019). The role of the TGF-β superfamily in myocardial infarction. Frontiers in Cardiovascular Medicine, 6, 140. https://doi.org/10.3389/fcvm.2019.00140
  • He, B. J., Joiner, M.-L A., Singh, M. V., Luczak, E. D., Swaminathan, P. D., Koval, O. M., Kutschke, W., Allamargot, C., Yang, J., Guan, X., Zimmerman, K., Grumbach, I. M., Weiss, R. M., Spitz, D. R., Sigmund, C. D., Blankesteijn, W. M., Heymans, S., Mohler, P. J., & Anderson, M. E. (2011). Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nature Medicine, 17(12), 1610–1618. https://doi.org/10.1038/nm.2506
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Koch, W., Hoppmann, P., Mueller, J. C., Schömig, A., & Kastrati, A. (2006). Association of transforming growth factor-β1 gene polymorphisms with myocardial infarction in patients with angiographically proven coronary heart disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(5), 1114–1119. https://doi.org/10.1161/01.ATV.0000217747.66517.11
  • Krijnen, P. A. J., et al. (2003). Increased Nox2 expression in human cardiomyocytes after acute myocardial infarction. Journal of Clinical Pathology. www.jclinpath.com.
  • Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation, 12(1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935
  • Lee, J., Hitzenberger, M., Rieger, M., Kern, N. R., Zacharias, M., & Im, W. (2020). CHARMM-GUI supports the Amber force fields. The Journal of Chemical Physics, 153(3), 35103. https://doi.org/10.1063/5.0012280
  • Lindsey, M. L. (2018). Assigning matrix metalloproteinase roles in ischaemic cardiac remodelling. Nature Reviews. Cardiology, 15(8), 471–479. https://doi.org/10.1038/s41569-018-0022-z
  • Loehr, J. A., et al. (no date). ‘NADPH oxidase mediates microtubule alterations and diaphragm dysfunction in dystrophic mice’. https://doi.org/10.7554/eLife.31732.001
  • Ma, Y., Yabluchanskiy, A., & Lindsey, M. L. (2013). Neutrophil roles in left ventricular remodeling following myocardial infarction. Fibrogenesis & Tissue Repair, 6(1), 11. https://doi.org/10.1186/1755-1536-6-11
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). ‘ MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Nabeebaccus, A., Zhang, M., & Shah, A. M. (2011). NADPH oxidases and cardiac remodelling. Heart Failure Reviews, 16(1), 5–12. https://doi.org/10.1007/s10741-010-9186-2
  • Nallamothu, B. K., Normand, S.-L T., Wang, Y., Hofer, T. P., Brush, J. E., Messenger, J. C., Bradley, E. H., Rumsfeld, J. S., & Krumholz, H. M. (2015). Relation between door-to-balloon times and mortality after primary percutaneous coronary intervention over time: a retrospective study. The Lancet, 385(9973), 1114–1122. https://doi.org/10.1016/S0140-6736(14)61932-2
  • Numata, J., Wan, M., & Knapp, E. (2007). Conformational entropy of biomolecules: Beyond the quasi-harmonic approximation. Genome Informatics. International Conference on Genome Informatics, 18, 192–205.
  • O’Riordan, E., Mendelev, N., Patschan, S., Patschan, D., Eskander, J., Cohen-Gould, L., Chander, P., & Goligorsky, M. S. (2007). Chronic NOS inhibition actuates endothelial-mesenchymal transformation. American Journal of Physiology-Heart and Circulatory Physiology, 292(1), H285–H294. https://doi.org/10.1152/ajpheart.00560.2006.-Chronic
  • Parisa, T. B., et al. (2018). Human serum albumin–malathion complex study in the presence of silver nanoparticles at different sizes by multi spectroscopic techniques. Journal of Biomolecular Structure and Dynamics, 37(9), 2254–2264. https://doi.org/10.1080/07391102.2018.1491416
  • Peiyuan, H., Jingang, Y., Haiyan, X., Xiaojin, G., Ying, X., Yuan, W., Wei, L., Yang, W., Xinran, T., Ruohua, Y., Chen, J., Lei, S., Xuan, Z., Rui, F., Yunqing, Y., Qiuting, D., Hui, S., Xinxin, Y., Runlin, G., & Yuejin, Y. (2016). The comparison of the outcomes between primary PCI, fibrinolysis, and no reperfusion in patients ≥ 75 years old with ST-segment elevation myocardial infarction: Results from the Chinese Acute Myocardial Infarction (CAMI) registry. PLoS One, 11(11), e0165672. https://doi.org/10.1371/journal.pone.0165672
  • Prins, K. W., Tian, L., Wu, D., Thenappan, T., Metzger, J. M., & Archer, S. L. (2017). ‘ Colchicine depolymerizes microtubules, increases junctophilin-2, and improves right ventricular function in experimental pulmonary arterial hypertension. Journal of the American Heart Association, 6(6). https://doi.org/10.1161/JAHA.117.006195
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Roubille, F., Kritikou, E., Busseuil, D., Barrere-Lemaire, S., & Tardif, J.-C. (2013). Colchicine: an old wine in a new bottle? Anti-Inflammatory & anti-Allergy Agents in Medicinal Chemistry, 12(1), 14–23. https://doi.org/10.2174/1871523011312010004
  • Segura, A. M., Frazier, O. H., & Buja, L. M. (2014). Fibrosis and heart failure. Heart Failure Reviews, 19(2), 173–185. https://doi.org/10.1007/s10741-012-9365-4
  • Sharifi-Rad, A., Mehrzad, J., Darroudi, M., Saberi, M. R., & Chamani, J. (2021). Oil-in-water nanoemulsions comprising Berberine in olive oil: Biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. Journal of Biomolecular Structure & Dynamics, 39(3), 1029–1043. https://doi.org/10.1080/07391102.2020.1724568
  • Sirker, A., Zhang, M., & Shah, A. M. (2011). NADPH oxidases in cardiovascular disease: Insights from in vivo models and clinical studies. Basic Research in Cardiology, 106(5), 735–747. https://doi.org/10.1007/s00395-011-0190-z
  • Surgucheva, I., Chidambaram, K., Willoughby, D. A., & Surguchov, A. (2010). ‘ Matrix metalloproteinase 9 expression: New regulatory elements. Journal of Ocular Biology, Diseases, and Informatics, 3(2), 41–52. https://doi.org/10.1007/s12177-010-9054-2
  • Sutton, M. G., St, J., & Sharpe, N. (2000). Left ventricular remodeling after myocardial infarction. Circulation, 101(25), 2981–2988. https://doi.org/10.1161/01.CIR.101.25.2981
  • Tagawa, H., et al. (1998). Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading. http://ahajournals.org.
  • Thygesen, K., Alpert, J. S., Jaffe, A. S., Chaitman, B. R., Bax, J. J., Morrow, D. A., & White, H. D. (2018). Fourth universal definition of myocardial infarction (2018). Journal of the American College of Cardiology, 72(18), 2231–2264. https://doi.org/10.1016/j.jacc.2018.08.1038
  • Tsao, C. W., Aday, A. W., Almarzooq, Z. I., Alonso, A., Beaton, A. Z., Bittencourt, M. S., Boehme, A. K., Buxton, A. E., Carson, A. P., Commodore-Mensah, Y., Elkind, M. S., Evenson, K. R., Eze-Nliam, C., Ferguson, J. F., Generoso, G., Ho, J. E., Kalani, R., Khan, S. S., Kissela, B. M., … Martin, S. S. (2022). Heart disease and stroke statistics—2022 update: A report from the American Heart Association. Circulation, 145(8). https://doi.org/10.1161/CIR.0000000000001052
  • Wang, W., Huang, X. R., Canlas, E., Oka, K., Truong, L. D., Deng, C., Bhowmick, N. A., Ju, W., Bottinger, E. P., & Lan, H. Y. (2006). Essential role of Smad3 in angiotensin II-induced vascular fibrosis. Circulation Research, 98(8), 1032–1039. https://doi.org/10.1161/01.RES.0000218782.52610.dc
  • Yuzawa, S., Suzuki, N. N., Fujioka, Y., Ogura, K., Sumimoto, H., & Inagaki, F. (2004). A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 9(5), 443–456. https://doi.org/10.1111/j.1356-9597.2004.00733.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.