240
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In silico prediction of the possible antidiabetic and anti-inflammatory targets of Nymphaea lotus-derived phytochemicals and mechanistic insights by molecular dynamics simulations

, ORCID Icon &
Pages 12225-12241 | Received 03 Nov 2022, Accepted 01 Jan 2023, Published online: 16 Jan 2023

References

  • Abdul-Ghani, M. A., DeFronzo, R. A., & Norton, L. (2013). Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30–50% of filtered glucose load in humans. Diabetes, 62(10), 3324–3328. https://doi.org/10.2337/DB13-0604
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/J.SOFTX.2015.06.001
  • Abuhammad, A., & Taha, M. O. (2016). QSAR studies in the discovery of novel type-II diabetic therapies. Expert Opinion on Drug Discovery, 11(2), 197–214. https://doi.org/10.1517/17460441.2016.1118046
  • Adewole, K. E., Gyebi, G. A., & Ibrahim, I. M. (2021). Amyloid β fibrils disruption by kolaviron: Molecular docking and extended molecular dynamics simulation studies. Computational Biology and Chemistry, 94, 107557. https://doi.org/10.1016/J.COMPBIOLCHEM.2021.107557
  • Adewole, K., & Ishola, A. (2021). BACE1 and cholinesterase inhibitory activities of compounds from Cajanus cajan and Citrus reticulata: An in silico study. In Silico Pharmacology, 9(1), 1–18. https://doi.org/10.1007/s40203-020-00067-6
  • Almasi, F., & Mohammadipanah, F. (2021). Prominent and emerging anti-diabetic molecular targets. Journal of Drug Targeting, 29(5), 491–506. https://doi.org/10.1080/1061186X.2020.1859517
  • Balogun, T. A., Iqbal, M. N., Saibu, O. A., Akintubosun, M. O., Lateef, O. M., Nneka, U. C., Abdullateef, O. T., & Omoboyowa, D. A. (2021). Discovery of potential HER2 inhibitors from Mangifera indica for the treatment of HER2-Positive breast cancer: An integrated computational approach. Journal of Biomolecular Structure & Dynamics, 40(23), 12772–12784. https://doi.org/10.1080/07391102.2021.1975570
  • Bekker, H., Berendsen, H., Dijkstra, E., Achterop, S., Vondrumen, R., Vanderspoel, D., Sijbers, A., Keegstra, H., & Renardus, M. (1993). Gromacs - A parallel computer for molecular-dynamics simulations (pp. 252–256). Uniwersytet Śląski. https://doi.org/10.2/JQUERY.MIN.JS
  • Bi, X., Lim, J., & Henry, C. (2011). Spices in the management of Diabetes mellitus. Food Chemistry. 217(15), 281–293. https://doi.org/10.1016/j.foodchem.2016.08.111
  • Buabeid, M. A., Arafa, E. S. A., Hassan, W., & Murtaza, G. (2020). In silico prediction of the mode of action of Viola odorata in diabetes. BioMed Research International, 2020, 2768403–2768413. https://doi.org/10.1155/2020/2768403
  • Chalannavar, R. K., Venugopala, K. N., Baijnath, H., & Odhav, B. (2015). Chemical composition of essential oil from the seed arils of Strelitzia nicolai Regel & Koern from South Africa. Journal of Essential Oil Bearing Plants, 17(6), 1373–1377. https://doi.org/10.1080/0972060X.2014.890079
  • Chaurasia, S., Sharma, V., Dar, A. I., Arya, N., Saxena, R. C., Chaurasia, I. D., & Shrivastava, R. (2011). In-vivo antidiabetic activity of alcoholic and aqueous extract of Nymphaea lotus in rat model. Inventi Rapid: Ethnopharmacology, 3
  • Chellappandian, M., Senthil-Nathan, S., Karthi, S., Vasantha-Srinivasan, P., Kalaivani, K., Hunter, W. B., Ali, A. M., Veerabahu, C., Elshikh, M. S., & Al Farraj, D. A. (2021). Larvicidal and repellent activity of N-methyl-1-adamantylamine and oleic acid a major derivative of bael tree ethanol leaf extracts against dengue mosquito vector and their biosafety on natural predator. Environmental Science and Pollution Research, 2021, 1–10. https://doi.org/10.1007/S11356-021-16219-W
  • Cheng, X., & Ivanov, I. (2012). Molecular dynamics. Methods in Molecular Biology (Clifton, N.J.), 929, 243–285. https://doi.org/10.1007/978-1-62703-050-2_11
  • Daina, A., Michielin, O., & Zoete, V. (2014). ILOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. Journal of Chemical Information and Modeling, 54(12), 3284–3301. https://doi.org/10.1021/ci500467k
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Daina, A., & Zoete, V. (2016). A BOILED‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • Damián-Medina, K., Salinas-Moreno, Y., Milenkovic, D., Figueroa-Yáñez, L., Marino-Marmolejo, E., Higuera-Ciapara, I., Vallejo-Cardona, A., & Lugo-Cervantes, E. (2020). In silico analysis of antidiabetic potential of phenolic compounds from blue corn (Zea mays L.) and black bean (Phaseolus vulgaris L.). Heliyon, 6(3), e03632. https://doi.org/10.1016/J.HELIYON.2020.E03632
  • de Oliveira, A. A., & Nunes, K. P. (2021). Crosstalk of TLR4, vascular NADPH oxidase, and COVID-19 in diabetes: What are the potential implications? Vascular Pharmacology, 139, 106879. https://doi.org/10.1016/J.VPH.2021.106879
  • Deacon, C. F. (2019). Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of Type 2 diabetes. Frontiers in Endocrinology, 10, 80. https://doi.org/10.3389/FENDO.2019.00080
  • Dong, Y. W., Liao, M. L., Meng, X. L., & Somero, G. N. (2018). Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proceedings of the National Academy of Sciences of the United States of America, 115(6), 1274–1279. https://doi.org/10.1073/PNAS.1718910115/-/DCSUPPLEMENTAL
  • Elumalai, S., Karunakaran, U., Moon, J. S., & Won, K. C. (2021). NADPH oxidase (NOX) targeting in diabetes: A special emphasis on pancreatic β-cell dysfunction. Cells, 10(7), 1573. https://doi.org/10.3390/CELLS10071573
  • Gheibi, S., Kashfi, K., & Ghasemi, A. (2017). A practical guide for induction of type-2 diabetes in rat: Incorporating a high-fat diet and streptozotocin. Biomedicine & Pharmacotherapy, 95, 605–613. https://doi.org/10.1016/J.BIOPHA.2017.08.098
  • Gleeson, M., Hersey, A., & Hannongbua, S. (2011). In-silico ADME models: A general assessment of their utility in drug discovery applications. Current Topics in Medicinal Chemistry, 11(4), 358–381. https://doi.org/10.2174/156802611794480927
  • Guengerich, F. P. (2021). A history of the roles of cytochrome P450 enzymes in the toxicity of drugs. Toxicological Research, 37(1), 1. https://doi.org/10.1007/S43188-020-00056-Z
  • Hayashi, M., Tojo, A., Shimosawa, T., & Fujita, T. (2013). The role of adrenomedullin in the renal NADPH oxidase and (Pro)renin in diabetic mice. Journal of Diabetes Research, 2013, 134395. https://doi.org/10.1155/2013/134395
  • Huneif, M. A., Alshehri, D. B., Alshaibari, K. S., Dammaj, M. Z., Mahnashi, M. H., Majid, S. U., Javed, M. A., Ahmad, S., Rashid, U., & Sadiq, A. (2022). Design, synthesis and bioevaluation of new vanillin hybrid as multitarget inhibitor of α-glucosidase, α-amylase, PTP-1B and DPP4 for the treatment of type-II diabetes. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 150, 113038. https://doi.org/10.1016/J.BIOPHA.2022.113038
  • IDF. (2019). IDF Diabetes Atlas 9th edition 2019. https://www.diabetesatlas.org/en/
  • Kakarla, L., Mathi, P., Allu, P. R., Rama, C., & Botlagunta, M. (2014). Identification of human cyclooxegenase-2 inhibitors from Cyperus scariosus (R.Br) rhizomes. Bioinformation, 10(10), 637–646. https://doi.org/10.6026/97320630010637
  • Leung, J. Y. T., & Pang, C. C. Y. (2014). Effects of nimesulide, a selective COX-2 inhibitor, on cardiovascular function in 2 rat models of diabetes. Journal of Cardiovascular Pharmacology, 64(1), 79–86. https://doi.org/10.1097/FJC.0000000000000093
  • Li, N., Zhou, G., Zheng, Y., Lv, D., Zhu, X., Wei, P., Zheng, M., Liu, S., Zhou, E., Sun, W., & Zhang, L. (2022). Effects of SGLT2 inhibitors on cardiovascular outcomes in patients with stage 3/4 CKD: A meta-analysis. PLoS One. 17(1), e0261986. https://doi.org/10.1371/JOURNAL.PONE.0261986
  • Lin, C. Y., Lee, T. Y., Sun, Z. J., Yang, Y. C., Wu, J. S., & Ou, H. T. (2017). Development of diabetes-specific quality of life module to be in conjunction with the World Health Organization quality of life scale brief version (WHOQOL-BREF). Health and Quality of Life Outcomes, 15(1), 1–10. https://doi.org/10.1186/S12955-017-0744-3/TABLES/5
  • Lipinski, C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44(1), 235–249. https://doi.org/10.1016/s1056-8719(00)00107-6
  • Lynch, T., & Price, A. (2007). The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. American Family Physician, 76(3), 391–396. www.aafp.org/afp.
  • Makhoba, X. H., Viegas, C., Mosa, R. A., Viegas, F. P. D., & Pooe, O. J. (2020). Potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Design, Development and Therapy, 14, 3235. https://doi.org/10.2147/DDDT.S257494
  • Morita, H., Deguchi, J., Motegi, Y., Sato, S., Aoyama, C., Takeo, J., Shiro, M., & Hirasawa, Y. (2010). Cyclic diarylheptanoids as Na+-glucose cotransporter (SGLT) inhibitors from Acer nikoense. Bioorganic & Medicinal Chemistry Letters, 20(3), 1070–1074. https://doi.org/10.1016/J.BMCL.2009.12.036
  • Nistala, R., & Savin, V. (2017). Diabetes, hypertension, and chronic kidney disease progression: Role of DPP4. American Journal of Physiology. Renal Physiology, 312(4), F661–F670. https://doi.org/10.1152/AJPRENAL.00316.2016/ASSET/IMAGES/LARGE/ZH20031781630002.JPEG
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open babel: An open chemical toolbox. Journal of Cheminformatics, 3(10), 33. https://doi.org/10.1186/1758-2946-3-33
  • Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676. https://doi.org/10.1002/JCC.20090
  • Oyeyemi, I. T., Akanni, O. O., Adaramoye, O. A., & Bakare, A. A. (2017). Methanol extract of Nymphaea lotus ameliorates carbon tetrachloride-induced chronic liver injury in rats via inhibition of oxidative stress. Journal of Basic and Clinical Physiology and Pharmacology, 28(1), 43–50. https://doi.org/10.1515/JBCPP-2016-0029/MACHINEREADABLECITATION/RIS
  • Oyeyemi, I. T., & Bakare, A. A. (2013). Genotoxic and anti-genotoxic effect of aqueous extracts of Spondias mombin L., Nymphea lotus L. and Luffa cylindrica L. on Allium cepa root tip cells. Caryologia, 66(4), 360–367. https://doi.org/10.1080/00087114.2013.857829
  • Oyeyemi, I. T., Yekeen, O. M., Odusina, P. O., Ologun, T. M., Ogbaide, O. M., Olaleye, O. I., & Bakare, A. A. (2015). Genotoxicity and anti-genotoxicity of aqueous and hydro-methanol extracts of Spondias mombin (L), Nymphaea lotus (L) and Luffa cylindrica (L) using animal bioassays. Interdisciplinary Toxicology, 8(4), 184–192. https://doi.org/10.1515/intox-2015-0028
  • Pokhrel, T., Shrestha, D., Dhakal, K., Yadav, P. M., & Adhikari, A. (2022). Comparative analysis of the antioxidant and antidiabetic potential of Nelumbo nucifera Gaertn. and Nymphaea lotus L. var. pubescens (Willd.). Journal of Chemistry, 2022, 1–5. https://doi.org/10.1155/2022/4258124
  • Pollastri, M. P. (2010). Overview on the rule of five. Current Protocols in Pharmacology, 49(1), 9.12.1–9.12.8. https://doi.org/10.1002/0471141755.PH0912S49
  • Pratley, R. E., & Salsali, A. (2007). Inhibition of DPP-4: A new therapeutic approach for the treatment of type 2 diabetes. Current Medical Research and Opinion, 23(4), 919–931. https://doi.org/10.1185/030079906X162746
  • Rajalakshmi, R. (2021). In silico studies: Physicochemical properties, drug score, toxicity predictions and molecular docking of organosulphur compounds against Diabetes mellitus. Journal of Molecular Recognition, 34(11), e2925. https://doi.org/10.1002/jmr.2925
  • Rege, M. G., Ayanwuyi, L. O., Zezi, A. U., & Odoma, S. (2021). Anti-nociceptive, anti-inflammatory and possible mechanism of anti-nociceptive action of methanol leaf extract of Nymphaea lotus Linn (Nymphaeceae). Journal of Traditional and Complementary Medicine, 11(2), 123–129. https://doi.org/10.1016/J.JTCME.2020.02.010
  • Sani, S. B., Aliyu, B. S., Hayatu, M., Aliyu, M., Nazifi, A. B., & Nuhu, Y. (2021). Ethno-medicinal practices in the treatment of diabetic foot ulcers in Kano state, North-Western Nigeria. Journal of Medicinal Herbs, 12(1), 67–84.
  • Santhosh Kumar, S., Sajeli Begum, A., Hira, K., Niazi, S., Prashantha Kumar, B. R., Araya, H., & Fujimoto, Y. (2019). Structure-based design and synthesis of new 4-methylcoumarin-based lignans as pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) inhibitors. Bioorganic Chemistry, 89(April), 102991. https://doi.org/10.1016/j.bioorg.2019.102991
  • Scheen, A. J., Esser, N., & Paquot, N. (2015). Antidiabetic agents: Potential anti-inflammatory activity beyond glucose control. Diabetes & Metabolism, 41(3), 183–194. https://doi.org/10.1016/J.DIABET.2015.02.003
  • Schüttelkopf, A. W. A., & Van Aalten, D. M. F. F. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60(8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Sharma, P., Joshi, T., Joshi, T., Chandra, S., & Tamta, S. (2021). Molecular dynamics simulation for screening phytochemicals as α-amylase inhibitors from medicinal plants. Journal of Biomolecular Structure & Dynamics, 39(17), 6524–6538. https://doi.org/10.1080/07391102.2020.1801507
  • Sinha, S., & Wang, S. M. (2020). Classification of VUS and unclassified variants in BRCA1 BRCT repeats by molecular dynamics simulation. Computational and Structural Biotechnology Journal, 18, 723–736. https://doi.org/10.1016/J.CSBJ.2020.03.013
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Wang, G., Liang, R., Liu, T., Wang, L., Zou, J., Liu, N., Liu, Y., Cai, X., Liu, Y., Ding, X., Zhang, B., Wang, Z., Wang, S., & Shen, Z. (2019). Opposing effects of IL-1β/COX-2/PGE2 pathway loop on islets in type 2 diabetes mellitus. Endocrine Journal, 66(8), 691–699. https://doi.org/10.1507/ENDOCRJ.EJ19-0015
  • Wang, L., Li, J., & Di, L. J. (2021). Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Medicinal Research Reviews, 42(2), 946–982. https://doi.org/10.1002/med.21867

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.