228
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

The allosteric effect of the upper half of SENP1 contributes to its substrate selectivity for SUMO1 over SUMO2

, , , , , , , , & show all
Pages 12372-12386 | Received 22 Sep 2022, Accepted 03 Jan 2023, Published online: 19 Jan 2023

References

  • Amadei, A., Linssen, A. B. M., & Berendsen, H. J. C. (1993). Essential dynamics of proteins. Proteins: Structure, Function, and Bioinformatics, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Amerik, A. Y., & Hochstrasser, M. (2004). Mechanism and function of deubiquitinating enzymes. Biochimica et Biophysica Acta, 1695(1–3), 189–207. https://doi.org/10.1016/j.bbamcr.2004.10.003
  • Bawa-Khalfe, T., Cheng, J., Lin, S.-H., Ittmann, M. M., & Yeh, E. T. H. (2010). SENP1 induces prostatic intraepithelial neoplasia through multiple mechanisms*. The Journal of Biological Chemistry, 285(33), 25859–25866. https://doi.org/10.1074/jbc.M110.134874
  • Bayer, P., Arndt, A., Metzger, S., Mahajan, R., Melchior, F., Jaenicke, R., & Becker, J. (1998). Structure determination of the small ubiquitin-related modifier SUMO-1. Journal of Molecular Biology, 280(2), 275–286. https://doi.org/10.1006/jmbi.1998.1839
  • Cheng, J., Bawa, T., Lee, P., Gong, L., & Yeh, E. T. H. (2006). Role of desumoylation in the development of prostate cancer. Neoplasia (New York, N.Y.), 8(8), 667–676. https://doi.org/10.1593/neo.06445
  • Eargle, J., & Luthey-Schulten, Z. (2012). NetworkView: 3D display and analysis of protein·RNA interaction networks. Bioinformatics (Oxford, England), 28(22), 3000–3001. https://doi.org/10.1093/bioinformatics/bts546
  • Gan-Erdene, T., Nagamalleswari, K., Yin, L., Wu, K., Pan, Z.-Q., & Wilkinson, K. D. (2003). Identification and characterization of DEN1, a deneddylase of the ULP family*. The Journal of Biological Chemistry, 278(31), 28892–28900. https://doi.org/10.1074/jbc.M302890200
  • Goldenberg, S. J., McDermott, J. L., Butt, T. R., Mattern, M. R., & Nicholson, B. (2008). Strategies for the identification of novel inhibitors of deubiquitinating enzymes. Biochemical Society Transactions, 36(5), 828–832. https://doi.org/10.1042/bst0360828
  • Hünenberger, P. H., Mark, A. E., & van Gunsteren, W. F. (1995). Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations. Journal of Molecular Biology, 252(4), 492–503. https://doi.org/10.1006/jmbi.1995.0514
  • Jang, H., Zhang, M., & Nussinov, R. (2020). The quaternary assembly of KRas4B with Raf-1 at the membrane. Computational and Structural Biotechnology Journal, 18, 737–748. https://doi.org/10.1016/j.csbj.2020.03.018
  • Johnson, E. S. (2004). Protein modification by SUMO. Annual Review of Biochemistry, 73(1), 355–382. https://doi.org/10.1146/annurev.biochem.73.011303.074118
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kaikkonen, S., Jääskeläinen, T., Karvonen, U., Rytinki, M. M., Makkonen, H., Gioeli, D., Paschal, B. M., & Palvimo, J. J. (2009). SUMO-specific protease 1 (SENP1) reverses the hormone-augmented SUMOylation of androgen receptor and modulates gene responses in prostate cancer cells. Molecular Endocrinology (Baltimore, Md.), 23(3), 292–307. https://doi.org/10.1210/me.2008-0219
  • Karplus, M., & Kushick, J. N. (1981). Method for estimating the configurational entropy of macromolecules. Macromolecules, 14(2), 325–332. https://doi.org/10.1021/ma50003a019
  • Kerscher, O., Felberbaum, R., & Hochstrasser, M. (2006). Modification of proteins by ubiquitin and ubiquitin-like proteins. Annual Review of Cell and Developmental Biology, 22(1), 159–180. https://doi.org/10.1146/annurev.cellbio.22.010605.093503
  • Kim, K. I. L., Baek, S. H., & Chung, C. H. (2002). Versatile protein tag, SUMO: Its enzymology and biological function. Journal of Cellular Physiology, 191(3), 257–268. https://doi.org/10.1002/jcp.10100
  • Kim, Y. H., Sung, K. S., Lee, S.-J., Kim, Y.-O., Choi, C. Y., & Kim, Y. (2005). Desumoylation of homeodomain-interacting protein kinase 2 (HIPK2) through the cytoplasmic-nuclear shuttling of the SUMO-specific protease SENP1. FEBS Letters, 579(27), 6272–6278. https://doi.org/10.1016/j.febslet.2005.10.010
  • Krissinel, E., & Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology, 372(3), 774–797. https://doi.org/10.1016/j.jmb.2007.05.022
  • Li, X., Dai, J., Ni, D., He, X., Zhang, H., Zhang, J., Fu, Q., Liu, Y., & Lu, S. (2020). Insight into the mechanism of allosteric activation of PI3Kα by oncoprotein K-Ras4B. International Journal of Biological Macromolecules, 144, 643–655. https://doi.org/10.1016/j.ijbiomac.2019.12.020
  • Li, M., Wang, Y., Fan, J., Zhuang, H., Liu, Y., Ji, D., & Lu, S. (2022). Mechanistic insights into the long-range allosteric regulation of KRAS via neurofibromatosis type 1 (NF1) scaffold upon SPRED1 loading. Journal of Molecular Biology, 434(17), 167730. https://doi.org/10.1016/j.jmb.2022.167730
  • Li, X., Wang, C., Peng, T., Chai, Z., Ni, D., Liu, Y., Zhang, J., Chen, T., & Lu, S. (2021). Atomic-scale insights into allosteric inhibition and evolutional rescue mechanism of Streptococcus thermophilus Cas9 by the anti-CRISPR protein AcrIIA6. Computational and Structural Biotechnology Journal, 19, 6108–6124. https://doi.org/10.1016/j.csbj.2021.11.010
  • Lu, S., Chen, Y., Wei, J., Zhao, M., Ni, D., He, X., & Zhang, J. (2021). Mechanism of allosteric activation of SIRT6 revealed by the action of rationally designed activators. Acta Pharmaceutica Sinica B, 11(5), 1355–1361. https://doi.org/10.1016/j.apsb.2020.09.010
  • Lu, S., He, X., Yang, Z., Chai, Z., Zhou, S., Wang, J., Rehman, A. U., Ni, D., Pu, J., Sun, J., & Zhang, J. (2021). Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nature Communications, 12(1), 4721. https://doi.org/10.1038/s41467-021-25020-9
  • Mikolajczyk, J., Drag, M., Békés, M., Cao, J. T., Ronai, Z., & Salvesen, G. S. (2007). Small ubiquitin-related modifier (SUMO)-specific proteases: Profiling the specificities and activities of human SENPS*. The Journal of Biological Chemistry, 282(36), 26217–26224. https://doi.org/10.1074/jbc.M702444200
  • Mukhopadhyay, D., & Dasso, M. (2007). Modification in reverse: The SUMO proteases. Trends in Biochemical Sciences, 32(6), 286–295. https://doi.org/10.1016/j.tibs.2007.05.002
  • Müller, S., Ledl, A., & Schmidt, D. (2004). SUMO: A regulator of gene expression and genome integrity. Oncogene, 23(11), 1998–2008. https://doi.org/10.1038/sj.onc.1207415
  • Ni, D., Wei, J., He, X., Rehman, A. U., Li, X., Qiu, Y., Pu, J., Lu, S., & Zhang, J. (2020). Discovery of cryptic allosteric sites using reversed allosteric communication by a combined computational and experimental strategy. Chemical Science, 12(1), 464–476. https://doi.org/10.1039/d0sc05131d
  • Qiu, Y., Yin, X., Li, X., Wang, Y., Fu, Q., Huang, R., & Lu, S. (2021). Untangling dual-targeting therapeutic mechanism of epidermal growth factor receptor (EGFR). Based on Reversed Allosteric Communication Pharmaceutics, 13(5), 747. https://doi.org/10.3390/pharmaceutics13050747
  • Reverter, D., & Lima, C. D. (2004). A basis for SUMO protease specificity provided by analysis of human SENP2 and a SENP2-SUMO complex. Structure, 12(8), 1519–1531. https://doi.org/10.1016/j.str.2004.05.023
  • Reverter, D., & Lima, C. D. (2006). Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates. Nature Structural & Molecular Biology, 13(12), 1060–1068. https://doi.org/10.1038/nsmb1168
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Sethi, A., Eargle, J., Black Alexis, A., & Luthey-Schulten, Z. (2009). Dynamical networks in tRNA: Protein complexes. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6620–6625. https://doi.org/10.1073/pnas.0810961106
  • Shen, L. N., Dong, C., Liu, H., Naismith, J. H., & Hay, R. T. (2006). The structure of SENP1–SUMO-2 complex suggests a structural basis for discrimination between SUMO paralogues during processing. The Biochemical Journal, 397(2), 279–288. https://doi.org/10.1042/BJ20052030
  • Shen, L., Tatham, M. H., Dong, C., Zagórska, A., Naismith, J. H., & Hay, R. T. (2006). SUMO protease SENP1 induces isomerization of the scissile peptide bond. Nature Structural & Molecular Biology, 13(12), 1069–1077. https://doi.org/10.1038/nsmb1172
  • Sindhikara, D., Kim, S., Voter, A., & Roitberg, A. (2009). Bad seeds sprout perilous dynamics: Stochastic thermostat induced trajectory synchronization in biomolecules. Journal of Chemical Theory and Computation, 5(6), 1624–1631. https://doi.org/10.1021/ct800573m
  • Swegat, W., Schlitter, J., Krüger, P., & Wollmer, A. (2003). MD simulation of protein-ligand interaction: formation and dissociation of an insulin-phenol complex. Biophysical Journal, 84(3), 1493–1506. https://doi.org/10.1016/S0006-3495(03)74962-5
  • Uberuaga, B. P., Anghel, M., & Voter, A. F. (2004). Synchronization of trajectories in canonical molecular-dynamics simulations: Observation, explanation, and exploitation. The Journal of Chemical Physics, 120(14), 6363–6374. https://doi.org/10.1063/1.1667473
  • Verger, A., Perdomo, J., & Crossley, M. (2003). Modification with SUMO. A role in transcriptional regulation. EMBO Reports, 4(2), 137–142. https://doi.org/10.1038/sj.embor.embor738
  • Wang, Y., Ji, D., Lei, C., Chen, Y., Qiu, Y., Li, X., Li, M., Ni, D., Pu, J., Zhang, J., Fu, Q., Liu, Y., & Lu, S. (2021). Mechanistic insights into the effect of phosphorylation on Ras conformational dynamics and its interactions with cell signaling proteins. Computational and Structural Biotechnology Journal, 19, 1184–1199. https://doi.org/10.1016/j.csbj.2021.01.044
  • Wang, Y., Li, M., Liang, W., Shi, X., Fan, J., Kong, R., Liu, Y., Zhang, J., Chen, T., & Lu, S. (2022). Delineating the activation mechanism and conformational landscape of a class B G protein-coupled receptor glucagon receptor. Computational and Structural Biotechnology Journal, 20, 628–639. https://doi.org/10.1016/j.csbj.2022.01.015
  • Wang, Q., Xia, N., Li, T., Xu, Y., Zou, Y., Zuo, Y., Fan, Q., Bawa-Khalfe, T., Yeh, E. T. H., & Cheng, J. (2013). SUMO-specific protease 1 promotes prostate cancer progression and metastasis. Oncogene, 32(19), 2493–2498. https://doi.org/10.1038/onc.2012.250
  • Wood, Z. A., Schröder, E., Robin Harris, J., & Poole, L. B. (2003). Structure, mechanism and regulation of peroxiredoxins. Trends in Biochemical Sciences, 28(1), 32–40. https://doi.org/10.1016/S0968-0004(02)00003-8
  • Wu, K., Yamoah, K., Dolios, G., Gan-Erdene, T., Tan, P., Chen, A., Lee, C., Wei, N., Wilkinson, K. D., Wang, R., & Pan, Z.-Q. (2003). DEN1 is a dual function protease capable of processing the C terminus of Nedd8 and deconjugating hyper-neddylated CUL1*. Journal of Biological Chemistry, 278(31), 28882–28891. https://doi.org/10.1074/jbc.M302888200
  • Xu, Z., Chau, S. F., Lam, K. H., Chan, H. Y., Ng, T. B., & Au, S. W. N. (2006). Crystal structure of the SENP1 mutant C603S–SUMO complex reveals the hydrolytic mechanism of SUMO-specific protease. The Biochemical Journal, 398(3), 345–352. https://doi.org/10.1042/BJ20060526
  • Xu, Y., Li, J., Zuo, Y., Deng, J., Wang, L.-S., & Chen, G.-Q. (2011). SUMO-specific protease 1 regulates the in vitro and in vivo growth of colon cancer cells with the upregulated expression of CDK inhibitors. Cancer Letters, 309(1), 78–84. https://doi.org/10.1016/j.canlet.2011.05.019
  • Yeh, E. T. H. (2009). SUMOylation and de-SUMOylation: Wrestling with life’s processes *. The Journal of Biological Chemistry, 284(13), 8223–8227. https://doi.org/10.1074/jbc.R800050200
  • Zhang, Q., Chen, Y., Ni, D., Huang, Z., Wei, J., Feng, L., Su, J.-C., Wei, Y., Ning, S., Yang, X., Zhao, M., Qiu, Y., Song, K., Yu, Z., Xu, J., Li, X., Lin, H., Lu, S., & Zhang, J. (2022). Targeting a cryptic allosteric site of SIRT6 with small-molecule inhibitors that inhibit the migration of pancreatic cancer cells. Acta Pharmaceutica Sinica B, 12(2), 876–889. https://doi.org/10.1016/j.apsb.2021.06.015
  • Zhang, M., Jang, H., & Nussinov, R. (2019). The mechanism of PI3Kα activation at the atomic level. Chemical Science, 10(12), 3671–3680. https://doi.org/10.1039/c8sc04498h
  • Zhang, H., Ni, D., Fan, J., Li, M., Zhang, J., Hua, C., Nussinov, R., & Lu, S. (2022). Markov state models and molecular dynamics simulations reveal the conformational transition of the intrinsically disordered hypervariable region of K-Ras4B to the ordered conformation. Journal of Chemical Information and Modeling, 62(17), 4222–4231. https://doi.org/10.1021/acs.jcim.2c00591

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.