336
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

The anticancer and EGFR-TK/CDK-9 dual inhibitory potentials of new synthetic pyranopyrazole and pyrazolone derivatives: X-ray crystallography, in vitro, and in silico mechanistic investigations

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 12411-12425 | Received 10 Nov 2022, Accepted 03 Jan 2023, Published online: 20 Jan 2023

References

  • Abourehab, M. A. S., Alqahtani, A. M., Youssif, B. G. M., & Gouda, A. M. (2021). Globally approved EGFR inhibitors: Insights into their syntheses, target kinases, biological activities. Receptor Interactions, and Metabolism, Molecules, 26, 6677. https://doi.org/10.3390/molecules26216677
  • Abulkhair, H. S., Elmeligie, S., Ghiaty, A., El-Morsy, A., Bayoumi, A. H., Ahmed, H. E. A., El-Adl, K., Zayed, M. F., Hassan, M. H., Akl, E. N., & El-Zoghbi, M. S. (2021). In vivo- and in silico-driven identification of novel synthetic quinoxalines as anticonvulsants and AMPA inhibitors. Archiv Der Pharmazie, 354(5), 2000449. https://doi.org/10.1002/ardp.202000449
  • Abulkhair, H. S., Turky, A., Ghiaty, A., Ahmed, H. E. A., & Bayoumi, A. H. (2020). Novel triazolophthalazine-hydrazone hybrids as potential PCAF inhibitors: Design, synthesis, in vitro anticancer evaluation, apoptosis, and molecular docking studies. Bioorganic Chemistry, 100, 103899. https://doi.org/10.1016/j.bioorg.2020.103899
  • Abul-Khair, H., Elmeligie, S., Bayoumi, A., Ghiaty, A., El-Morsy, A., & Hassan, M. H. (2013). Synthesis and evaluation of some new (1,2,4) triazolo(4,3-a)quinoxalin- 4(5h)-one derivatives as AMPA receptor antagonists. Journal of Heterocyclic Chemistry, 50, 1202–1208. https://doi.org/10.1002/jhet.714
  • Ahmed, H. E. A., Ihmaid, S. K., Omar, A. M., Shehata, A. M., Rateb, H. S., Zayed, M. F., Ahmed, S., & Elaasser, M. M. (2018). Design, synthesis, molecular docking of new lipophilic acetamide derivatives affording potential anticancer and antimicrobial agents. Bioorganic Chemistry, 76, 332–342. https://doi.org/10.1016/j.bioorg.2017.11.019
  • Ali, R., & Wendt, M. K. (2017). The paradoxical functions of EGFR during breast cancer progression. Signal Transduction and Targeted Therapy, 2, 16042–16042. https://doi.org/10.1038/sigtrans.2016.42
  • Aljuhani, A., Ahmed, H. E. A., Ihmaid, S. K., Omar, A. M., Althagfan, S. S., Alahmadi, Y. M., Ahmad, I., Patel, H., Ahmed, S., Almikhlafi, M. A., El-Agrody, A. M., Zayed, M. F., Turkistani, S. A., Abulkhair, S. H., Almaghrabi, M., Salama, S. A., Al-Karmalawy, A. A., & Abulkhair, H. S. (2022). In vitro and computational investigations of novel synthetic carboxamide-linked pyridopyrrolopyrimidines with potent activity as SARS-CoV-2-M Pro inhibitors. RSC Advances, 12(41), 26895–26907. https://doi.org/10.1039/D2RA04015H
  • Alswah, M., Bayoumi, A., Elgamal, K., Elmorsy, A., Ihmaid, S., & Ahmed, H. (2017). Design, synthesis and cytotoxic evaluation of novel chalcone derivatives bearing triazolo[4,3-a]-quinoxaline moieties as potent anticancer agents with dual EGFR kinase and tubulin polymerization inhibitory effects. Molecules, 23(1), 48. https://doi.org/10.3390/molecules23010048
  • Bala, K., Husain, I., & Sharma, A. (2020). Arginine deaminase from Pseudomonas aeruginosa PS2: purification, biochemical characterization and in-vitro evaluation of anticancer activity. 3 Biotech, 10(5), 226. https://doi.org/10.1007/s13205-020-02212-6
  • Beller, M., Riermeier, T. H., Mägerlein, W., Müller, T. E., & Scherer, W. (1998). Chemistry of chelate-stabilized aryloxopalladium(II) complexes: syntheses, X-ray crystal structures and formation of CH…O hydrogen-bonds. Polyhedron, 17(7), 1165–1176. https://doi.org/10.1016/S0277-5387(97)00504-4
  • Bolomsky, A., Vogler, M., Köse, M. C., Heckman, C. A., Ehx, G., Ludwig, H., & Caers, J. (2020). MCL-1 inhibitors, fast-lane development of a new class of anti-cancer agents. Journal of Hematology & Oncology, 13(1), 173. https://doi.org/10.1186/s13045-020-01007-9
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. ACM/IEEE SC 2006 Conf., IEEE, pp. 43–43. https://doi.org/10.1109/SC.2006.54
  • Brisard, D., Eckerdt, F., Marsh, L. A., Blyth, G. T., Jain, S., Cristofanilli, M., Horiuchi, D., & Platanias, L. C. (2018). Antineoplastic effects of selective CDK9 inhibition with atuveciclib on cancer stem-like cells in triple-negative breast cancer. Oncotarget, 9(99), 37305–37318. https://doi.org/10.18632/oncotarget.26468
  • Canonici, A., Browne, A. L., Ibrahim, M. F. K., Fanning, K. P., Roche, S., Conlon, N. T., O'Neill, F., Meiller, J., Cremona, M., Morgan, C., Hennessy, B. T., Eustace, A. J., Solca, F., O'Donovan, N., & Crown, J. (2020). Combined targeting EGFR and SRC as a potential novel therapeutic approach for the treatment of triple negative breast cancer. Therapeutic Advances in Medical Oncology, 12, 1758835919897546. https://doi.org/10.1177/1758835919897546
  • Cheng, S.-S., Qu, Y.-Q., Wu, J., Yang, G.-J., Liu, H., Wang, W., Huang, Q., Chen, F., Li, G., Wong, C.-Y., Wong, V. K. W., Ma, D.-L., & Leung, C.-H. (2022). Inhibition of the CDK9–cyclin T1 protein–protein interaction as a new approach against triple-negative breast cancer. Acta Pharmaceutica Sinica. B, 12(3), 1390–1405. https://doi.org/10.1016/j.apsb.2021.10.024
  • CrysAlis. (2013). Data collection and processing software for agilent X-ray diffractometers. https://www.agilent.com/cs/library/usermanuals/Public/CrysAlis_Pro_User_Manual.pdf.
  • da Silva, M. J. V., Jacomini, A. P., Figueiredo, M. C., Back, D. F., Foglio, M. A., Ruiz, A., Paula, F. R., & Rosa, F. A. (2021). Efficient synthesis and antitumor evaluation of 4-aminomethyl-N-arylpyrazoles: Discovery of potent and selective agents for ovarian cancer, Bioorg. Bioorganic & Medicinal Chemistry, 29, 115835. https://doi.org/10.1016/j.bmc.2020.115835
  • Dyachenko, V. D., Dyachenko, A. D., & Chernega, A. N. (2004). Synthesis of substituted 1,3-cyclohexadienes, pyridine-2(1H)-thiones, and Thieno[2,3-d]pyrimidine- 4(3H)-thiones by the Michael Reaction, Russ. Journal of Organic Chemistry, 40, 397–406. https://doi.org/10.1023/B:RUJO.0000034978.81993.bd
  • El-Adl, K., El-Helby, A. G. A., Sakr, H., Ayyad, R. R., Mahdy, H. A., Nasser, M., Abulkhair, H. S., & El-Hddad, S. S. A. (2021). Design, synthesis, molecular docking, anticancer evaluations, and in silico pharmacokinetic studies of novel 5-[(4-chloro/2,4-dichloro)benzylidene]thiazolidine-2,4-dione derivatives as VEGFR-2 inhibitors. Archiv der Pharmazie, 354(2), 2000279. https://doi.org/10.1002/ardp.202000279
  • El-Adl, K., Sakr, H., El-Hddad, S. S. A., El-Helby, A. G. A., Nasser, M., & Abulkhair, H. S. (2021). Design, synthesis, docking, ADMET profile, and anticancer evaluations of novel thiazolidine-2,4-dione derivatives as VEGFR-2 inhibitors. Archiv Der Pharmazie, 354(7), 2000491. https://doi.org/10.1002/ardp.202000491
  • El-Agrody, A. M., Fouda, A. M., Mohamed, H. M., Alshahrani, M. Y., Ghabbour, H. A., Amr, A. E.-G. E., Okasha, R. M., Naglah, A. M., Almehizia, A. A., & Elhenawy, A. A. (2022). The crystal structure of 2-amino-4-(2,3-dichlorophenyl)-6-methoxy-4h-benzo[h]chromene-3-carbonitrile: Antitumor and tyrosine kinase receptor inhibition mechanism studies. Crystals, 12(5), 737. https://doi.org/10.3390/cryst12050737
  • Elgaafary, M., Fouda, A. M., Mohamed, H. M., Hamed, A., El-Mawgoud, H. K. A., Jin, L., Ulrich, J., Simmet, T., Syrovets, T., & El-Agrody, A. M. (2021). Synthesis of β-enaminonitrile-linked 8-methoxy-1H-Benzo[f]chromene moieties and analysis of their antitumor mechanisms. Frontiers in Chemistry, 9, 759148. https://doi.org/10.3389/fchem.2021.759148
  • El-Mawgoud, H. K. A., Radwan, H. A. M., Fouda, A. M., El-Mariah, F., Elhenawy, A. A., Amr, A. E., Almehizia, A. A., Ghabbour, H. A., & El-Agrody, A. M. (2022). Synthesis, cytotoxic activity, crystal structure, DFT, molecular docking study of some heterocyclic compounds incorporating benzo[f]chromene moieties. Journal of Molecular Structure, 1260, 132829. https://doi.org/10.1016/j.molstruc.2022.132829
  • El-Shershaby, M. H., Ghiaty, A., Bayoumi, A. H., Ahmed, H. E. A., El-Zoghbi, M. S., El-Adl, K., & Abulkhair, H. S. (2021). 1,2,4-Triazolo[4,3- c] quinazolines: a bioisosterism-guided approach towards the development of novel PCAF inhibitors with potential anticancer activity. New Journal of Chemistry, 45(25), 11136–11152. https://doi.org/10.1039/D1NJ00710F
  • El‐Adl, K.,Ibrahim, M. K.,Khedr, F.,Abulkhair, H. S., &Eissa, I. H. (2022). Design, synthesis, docking, and anticancer evaluations of phthalazines as VEGFR‐2 inhibitors. Archiv Der Pharmazie, 355(1), 2100278.https://doi.org/10.1002/ardp.202100278
  • Ezzat, H. G., Bayoumi, A. H., Sherbiny, F. F., El-Morsy, A. M., Ghiaty, A., Alswah, M., & Abulkhair, H. S. (2021). Design, synthesis, and molecular docking studies of new [1,2,4]triazolo[4,3-a]quinoxaline derivatives as potential A2B receptor antagonists, Mol. Molecular Diversity, 25(1), 291–306. https://doi.org/10.1007/s11030-020-10070-w
  • Farrugia, L. J. (2012). WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45(4), 849–854. https://doi.org/10.1107/S0021889812029111
  • Fouda, A. M., El-Nassag, M. A. A., Elhenawy, A. A., Shati, A. A., Alfaifi, M. Y., Elbehairi, S. E. I., Alam, M. M., & El-Agrody, A. M. (2022). Synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives and exploring molecular and cytotoxic properties based on DFT and molecular docking studies. Journal of Molecular Structure, 1249, 131555. https://doi.org/10.1016/j.molstruc.2021.131555
  • Gaafary, M. E., Lehner, J., Fouda, A. M., Hamed, A., Ulrich, J., Simmet, T., Syrovets, T., & El-Agrody, A. M. (2021). Synthesis and evaluation of antitumor activity of 9-methoxy-1H-benzo[f]chromene derivatives. Bioorganic Chemistry, 116, 105402. https://doi.org/10.1016/j.bioorg.2021.105402
  • Gaber, A. A., Morsy, A. E., Sherbiny, F. F., Bayoumi, A. H., Gamal, K. E., Adl, K. E., Al‐Karmalawy, A. A., Ezz Eldin, R. R., Saleh, M. A., & Abulkhair, H. S. (2021). Pharmacophore‐linked pyrazolo[3,4‐ d] pyrimidines as EGFR‐TK inhibitors: Synthesis, anticancer evaluation, pharmacokinetics, and in silico mechanistic studies. Archiv Der Pharmazie. https://doi.org/10.1002/ardp.202100258
  • Gupta, P., Narayanan, S., & Yang, D.-H. (2019). CDK inhibitors as sensitizing agents for cancer chemotherapy. In Protein kinase inhib as sensitizing agents chemother (pp. 125–149.). Elsevier. https://doi.org/10.1016/B978-0-12-816435-8.00009-2
  • Hamed, M. I. A., Darwish, K. M., Soltane, R., Chrouda, A., Mostafa, A., Abo Shama, N. M., Elhady, S. S., Abulkhair, H. S., Khodir, A. E., Elmaaty, A. A., & Al-Karmalawy, A. A. (2021). β-Blockers bearing hydroxyethylamine and hydroxyethylene as potential SARS-CoV-2 Mpro inhibitors: rational based design in silico, in vitro, and SAR studies for lead optimization. RSC Advances, 11, 35536–35558. https://doi.org/10.1039/D1RA04820A
  • Hammoud, M. M., Khattab, M., Abdel-Motaal, M., Van der Eycken, J., Alnajjar, R., Abulkhair, H., & Al‐Karmalawy, A. A. (2022). Synthesis, structural characterization, DFT calculations, molecular docking, and molecular dynamics simulations of a novel ferrocene derivative to unravel its potential antitumor activity. Journal of Biomolecular Structure and Dynamics, 1–18. https://doi.org/10.1080/07391102.2022.2082533
  • Hashmi, A. S. K., & Rudolph, M. (2008). Gold catalysis in total synthesis. Chemical Society Reviews, 37(9), 1766–1775. https://doi.org/10.1039/b615629k
  • Husain, I., Sharma, A., Kumar, S., & Malik, F. (2016). Purification and characterization of glutaminase free asparaginase from Pseudomonas otitidis: Induce apoptosis in human leukemia MOLT-4 cells. Biochimie, 121, 38–51. https://doi.org/10.1016/j.biochi.2015.11.012
  • Ihmaid, S., Ahmed, H., & Zayed, M. (2018). The design and development of potent small molecules as anticancer agents targeting EGFR TK and tubulin polymerization. International Journal of Molecular Sciences, 19(2), 408. https://doi.org/10.3390/ijms19020408
  • Ismail, M. M. F., Soliman, D. H., Sabour, R., & Farrag, A. M. (2021). Synthesis of new arylazopyrazoles as apoptosis inducers: Candidates to inhibit proliferation of MCF‐7 cells. Archiv der Pharmazie, 354(1), 2000214. https://doi.org/10.1002/ardp.202000214
  • Kang, J., Guo, Z., Zhang, H., Guo, R., Zhu, X., & Guo, X. (2022). Dual inhibition of EGFR and IGF-1R signaling leads to enhanced antitumor efficacy against esophageal squamous cancer. International Journal of Molecular Sciences, 23(18), 10382. https://doi.org/10.3390/ijms231810382
  • Khaled, D. M., Elshakre, M. E., Noamaan, M. A., Butt, H., Abdel Fattah, M. M., & Gaber, D. A. (2022). A computational QSAR, molecular docking and in vitro cytotoxicity study of novel thiouracil-based drugs with anticancer activity against human-DNA topoisomerase II. International Journal of Molecular Sciences, 23(19), 11799. https://doi.org/10.3390/ijms231911799
  • Khedr, F., Ibrahim, M. K., Eissa, I. H., Abulkhair, H. S., & El-Adl, K. (2021). Phthalazine-based VEGFR-2 inhibitors: Rationale, design, synthesis, in silico, ADMET profile, docking, and anticancer evaluations. Archiv der Pharmazie, 354(11), e2100201. https://doi.org/10.1002/ardp.202100201
  • Kutkat, O., Moatasim, Y., Al‐Karmalawy, A. A., Abulkhair, H. S., Gomaa, M. R., El-Taweel, A. N., Abo Shama, N. M., GabAllah, M., Mahmoud, D. B., Kayali, G., Ali, M. A., Kandeil, A., & Mostafa, A. (2022). Robust antiviral activity of commonly prescribed antidepressants against emerging coronaviruses: in vitro and in silico drug repurposing studies. Scientific Reports, 12(1), 12920. https://doi.org/10.1038/s41598-022-17082-6
  • Leeson, P. D., & Springthorpe, B. (2007). The influence of drug-like concepts on decision-making in medicinal chemistry. Nature Reviews. Drug Discovery, 6(11), 881–890. https://doi.org/10.1038/nrd2445
  • Malebari, A. M.,E. A. Ahmed, H.,Ihmaid, S. K.,Omar, A. M.,Muhammad, Y. A.,Althagfan, S. S.,Aljuhani, N.,A. A. El-Sayed, A.-A.,Halawa, A. H.,El-Tahir, H. M.,Turkistani, S. A.,Almaghrabi, M.,K. B. Aljohani, A.,El-Agrody, A. M., &Abulkhair, H. S. (2023). Exploring the dual effect of novel 1,4-diarylpyranopyrazoles as antiviral and anti-inflammatory for the management of SARS-CoV-2 and associated inflammatory symptoms. Bioorganic Chemistry, 130, 106255.https://doi.org/10.1016/j.bioorg.2022.106255
  • Mantzanidou, M., Pontiki, E., & Hadjipavlou-Litina, D. (2021). Pyrazoles and pyrazolines as anti-inflammatory agents. Molecules, 26(11), 3439. https://doi.org/10.3390/molecules26113439
  • Massai, L., Cirri, D., Michelucci, E., Bartoli, G., Guerri, A., Cinellu, M. A., Cocco, F., Gabbiani, C., & Messori, L. (2016). Organogold(III) compounds as experimental anticancer agents: chemical and biological profiles. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 29(5), 863–872. https://doi.org/10.1007/s10534-016-9957-x
  • Mazal, H., Aviram, H., Riven, I., & Haran, G. (2018). Effect of ligand binding on a protein with a complex folding landscape, Phys. Physical Chemistry Chemical Physics: PCCP, 20(5), 3054–3062. https://doi.org/10.1039/C7CP03327C
  • Mirzadeh, N., Reddy, T. S., & Bhargava, S. K. (2019). Advances in diphosphine ligand-containing gold complexes as anticancer agents, Coord. Chemical Reviews, 388, 343–359. https://doi.org/10.1016/j.ccr.2019.02.027
  • Mishani, E., Abourbeh, G., Eiblmaier, M., & Anderson, C. (2008). Imaging of EGFR and EGFR tyrosine kinase overexpression in tumors by nuclear medicine modalities. Current Pharmaceutical Design, 14(28), 2983–2998. https://doi.org/10.2174/138161208786404326
  • Mitra, P., Yang, R.-M., Sutton, J., Ramsay, R. G., & Gonda, T. J. (2016). CDK9 inhibitors selectively target estrogen receptor-positive breast cancer cells through combined inhibition of MYB and MCL-1 expression. Oncotarget, 7(8), 9069–9083. https://doi.org/10.18632/oncotarget.6997
  • Mohammed, E. Z., Mahmoud, W. R., George, R. F., Hassan, G. S., Omar, F. A., & Georgey, H. H. (2021). Synthesis, in vitro anticancer activity and in silico studies of certain pyrazole-based derivatives as potential inhibitors of cyclin dependent kinases (CDKs. Bioorganic Chemistry, 116, 105347. https://doi.org/10.1016/j.bioorg.2021.105347
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
  • Okasha, R. M., Fouda, A. M., Bajaber, M. A., Ghabbour, H. A., Amr, A. E.-G E., Naglah, A. M., Almehizia, A. A., Elhenawy, A. A., & El-Agrody, A. M. (2022). The crystal structure of 3-amino-1-(4-chlorophenyl)-9-methoxy-1H-benzo[f]chromene-2-carbonitrile: Antimicrobial activity and docking studies. Crystals, 12(7), 982. https://doi.org/10.3390/cryst12070982
  • Othman, E. M., Fayed, E. A., Husseiny, E. M., & Abulkhair, H. S. (2022). Apoptosis induction, PARP-1 inhibition, and cell cycle analysis of leukemia cancer cells treated with novel synthetic 1,2,3-triazole-chalcone conjugates. Bioorganic Chemistry, 123, 105762. https://doi.org/10.1016/j.bioorg.2022.105762
  • Othman, E. M., Fayed, E. A., Husseiny, E. M., & Abulkhair, H. S. (2022). Rationale design, synthesis, cytotoxicity evaluation, and in silico mechanistic studies of novel 1,2,3-triazoles with potential anticancer activity. New Journal of Chemistry, 46(25), 12206–12216. https://doi.org/10.1039/D2NJ02061K
  • Othman, E. M., Fayed, E. A., Husseiny, E. M., & Abulkhair, H. S. (2022). The effect of novel synthetic semicarbazone- and thiosemicarbazone-linked 1,2,3-triazoles on the apoptotic markers, VEGFR-2, and cell cycle of myeloid leukemia. Bioorganic Chemistry, 127, 105968. https://doi.org/10.1016/j.bioorg.2022.105968
  • Prince, E. (2004). International tables for crystallography, Volume C, 3rd Edition, Mathematical, Physical and Chemical Tables, 1st ed., Wiley Online Library. https://www.wiley.com/en-us/International+Tables+for+Crystallography%2C+Volume+C%2C+3rd+Edition%2C+Mathematical%2C+Physical+and+Chemical+Tables-p-9780470710296.
  • Rappoport, Z., & Ladkani, D. (1974). Nucleophilic attacks on carbon–carbon double bonds. Part XX. Reaction of active methylene compounds with electrophilic olefins. Formation of substituted 2-amino-4-cyano-4H-pyrans. Journal of the Chemical Society, Perkin Transactions, 1, 2595–2601. https://doi.org/10.1039/P19740002595
  • Saradhi Chandavaram, P., Maddirala, S. J., Vidavalur, S., & Somaiah, N. (2022). Design, synthesis and biological evaluation of isoxazole bearing N-Arylpyrazole derivatives as anticancer agents. Chemical Data Collections, 41, 100938. https://doi.org/10.1016/j.cdc.2022.100938
  • Schmidbaur, H., & Schier, A. (2010). Gold η 2 -coordination to unsaturated and aromatic hydrocarbons: The key step in gold-catalyzed organic transformations. Organometallics, 29(1), 2–23. https://doi.org/10.1021/om900900u
  • Sharma, A., & Husain, I. (2017). Evaluation of antitumor activity of glutaminase-free periplasmic asparaginase from indigenous bacterial isolates as candidates for cancer therapy. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 87(3), 997–1004. https://doi.org/10.1007/s40011-015-0681-z
  • Sheldrick, G. M. (2015). SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica Section A Foundations and Advances, 71(1), 3–8. https://doi.org/10.1107/S2053273314026370
  • Shu, X.-Z., Liu, X.-Y., Xiao, H.-Q., Ji, K.-G., Guo, L.-N., Qi, C.-Z., & Liang, Y.-M. (2007). Gold-catalyzed tandem cycloisomerization of alkynyloxiranes with nucleophiles: An efficient approach to 2,5-disubstituted furans. Advanced Synthesis & Catalysis, 349(16), 2493–2498. https://doi.org/10.1002/adsc.200700319
  • Singh, R., & Bansal, R. (2019). 16,17-N′-(alky/arylsulfonyl)pyrazoline substituted neuroprotective heterosteroids: Synthesis, molecular docking and preclinical efficacy/toxicity studies in rodents. Steroids, 148, 114–124. https://doi.org/10.1016/j.steroids.2019.05.002
  • Stamos, J., Sliwkowski, M. X., & Eigenbrot, C. (2002). Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. The Journal of Biological Chemistry, 277(48), 46265–46272. https://doi.org/10.1074/jbc.M207135200
  • The World Health Organization, Cancer. (2022). Retrieved May 12, 2022, from https://www.who.int/news-room/fact-sheets/detail/cancer.
  • Tominaga, Y., Kawabe, M., & Hosomi, A. (1987). Synthesis of 4-methylthio-2(1 H) -pyridone derivatives using ketene dithioacetals. Journal of Heterocyclic Chemistry, 24(5), 1325–1331. https://doi.org/10.1002/jhet.5570240519
  • Turky, A.,Sherbiny, F. F.,Bayoumi, A. H.,Ahmed, H. E. A., &Abulkhair, H. S. (2020). Novel 1,2,4‐triazole derivatives: Design, synthesis, anticancer evaluation, molecular docking, and pharmacokinetic profiling studies. Archiv Der Pharmazie, 353(12), 2000170.https://doi.org/10.1002/ardp.202000170
  • Turky, A., Bayoumi, A. H., Ghiaty, A., El-Azab, A. S., M. Abdel-Aziz, A. A., & Abulkhair, H. S. (2020). Design, synthesis, and antitumor activity of novel compounds based on 1,2,4-triazolophthalazine scaffold: Apoptosis-inductive and PCAF-inhibitory effects. Bioorganic Chemistry, 101, 104019. https://doi.org/10.1016/j.bioorg.2020.104019
  • Visbal, R., Graus, S., Herrera, R. P., & Gimeno, M. C. (2018). gold catalyzed multicomponent reactions beyond A3 coupling. Molecules, 23(9), 2255. https://doi.org/10.3390/molecules23092255
  • Xue, L., Chiu, S., & Oleinick, N. L. (2003). Staurosporine-induced death of MCF-7 human breast cancer cells: a distinction between caspase-3-dependent steps of apoptosis and the critical lethal lesions. Experimental Cell Research, 283(2), 135–145. https://doi.org/10.1016/S0014-4827(02)00032-0
  • Yamaoka, T., Kusumoto, S., Ando, K., Ohba, M., & Ohmori, T. (2018). Receptor tyrosine kinase-targeted cancer therapy. International Journal of Molecular Sciences, 19(11), 3491. https://doi.org/10.3390/ijms19113491
  • Yousuf, S., Khan, K. M., Salar, U., Chigurupati, S., Muhammad, M. T., Wadood, A., Aldubayan, M., Vijayan, V., Riaz, M., & Perveen, S. (2018). 2′-Aryl and 4′-arylidene substituted pyrazolones: As potential α-amylase inhibitors. European Journal of Medicinal Chemistry, 159, 47–58. https://doi.org/10.1016/j.ejmech.2018.09.052
  • Zaki, A. A., Kaddah, M. M. Y., Abulkhair, H. S., & Ashour, A. (2022). Unravelling the antifungal and antiprotozoal activities and LC-MS/MS quantification of steroidal saponins isolated from Panicum turgidum. RSC Advances, 12(5), 2980–2991. https://doi.org/10.1039/D1RA08532H
  • Zhang, M., Zhang, L., Hei, R., Li, X., Cai, H., Wu, X., Zheng, Q., & Cai, C. (2021). CDK inhibitors in cancer therapy, an overview of recent development. American Journal of Cancer Research, 11(5), 1913–1935. http://www.ncbi.nlm.nih.gov/pubmed/34094661.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.