336
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Structural dynamics and susceptibility of isobutylamido thiazolyl resorcinol (ThiamidolTM) against human and mushroom tyrosinases

, , , &
Pages 11810-11817 | Received 23 Nov 2022, Accepted 23 Dec 2022, Published online: 16 Jan 2023

References

  • Aiebchun, T., Mahalapbutr, P., Auepattanapong, A., Khaikate, O., Seetaha, S., Tabtimmai, L., Kuhakarn, C., Choowongkomon, K., & Rungrotmongkol, T. (2021). Identification of vinyl sulfone derivatives as EGFR tyrosine kinase inhibitor: In vitro and in silico studies. Molecules, 26(8), 2211. https://doi.org/10.3390/molecules26082211
  • Chari, R., Jerath, K., Badkar, A. V., & Kalonia, D. S. (2009). Long- and short-range electrostatic interactions affect the rheology of highly concentrated antibody solutions. Pharmaceutical Research, 26(12), 2607–2618. https://doi.org/10.1007/s11095-009-9975-2
  • Chen, W.-C., Tseng, T.-S., Hsiao, N.-W., Lin, Y.-L., Wen, Z.-H., Tsai, C.-C., Lee, Y.-C., Lin, H.-H., & Tsai, K.-C. (2015). Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Scientific Reports, 5, 7995.
  • Choi, I., Park, Y., Ryu, I. Y., Jung, H. J., Ullah, S., Choi, H., Park, C., Kang, D., Lee, S., Chun, P., Young Chung, H., & Moon, H. R. (2021). In silico and in vitro insights into tyrosinase inhibitors with a 2-thioxooxazoline-4-one template. Computational and Structural Biotechnology Journal, 19, 37–50. https://doi.org/10.1016/j.csbj.2020.12.001
  • da Silva, A. P., Silva, N. d F., Andrade, E. H. A., Gratieri, T., Setzer, W. N., Maia, J. G. S., & da Silva, J. K. R. (2017). Tyrosinase inhibitory activity, molecular docking studies and antioxidant potential of chemotypes of Lippia origanoides (Verbenaceae) essential oils. PloS One, 12(5), e0175598. https://doi.org/10.1371/journal.pone.0175598
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Durai, P., Ko, Y.-J., Kim, J.-C., Pan, C.-H., & Park, K. (2021). Identification of tyrosinase inhibitors and their structure-activity relationships via evolutionary chemical binding similarity and structure-based methods. Molecules, 26(3), 566. https://doi.org/10.3390/molecules26030566
  • Espín, J. C., Varón, R., Fenoll, L. G., Gilabert, M. A., García-Ruíz, P. A., Tudela, J., & García-Cánovas, F. (2000). Kinetic characterization of the substrate specificity and mechanism of mushroom tyrosinase. European Journal of Biochemistry, 267(5), 1270–1279. https://doi.org/10.1046/j.1432-1327.2000.01013.x
  • Frisch, M. J., et al. (2009). 75 Gaussian 09, Revision d. 01 (p. 201). Gaussian. Inc.
  • Hassan, M., Ashraf, Z., Abbas, Q., Raza, H., & Seo, S.-Y. (2018). Exploration of novel human tyrosinase inhibitors by molecular modeling, docking and simulation studies. Interdisciplinary Sciences, Computational Life Sciences, 10(1), 68–80. https://doi.org/10.1007/s12539-016-0171-x
  • Ismaya, W. T., Rozeboom, H. J., Weijn, A., Mes, J. J., Fusetti, F., Wichers, H. J., & Dijkstra, B. W. (2011). Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry, 50(24), 5477–5486. https://doi.org/10.1021/bi200395t
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics. 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Klaewkla, M., Charoenwongpaiboon, T., & Mahalapbutr, P. (2021). Molecular basis of the new COVID-19 target neuropilin-1 in complex with SARS-CoV-2 S1 C-end rule peptide and small-molecule antagonists. Journal of Molecular Liquids, 335, 116537.
  • Lai, X., Wichers, H. J., Soler-Lopez, M., & Dijkstra, B. W. (2017). Structure of human tyrosinase related protein 1 reveals a binuclear zinc active site important for melanogenesis. Angewandte Chemie (International ed. in English), 56(33), 9812–9815. https://doi.org/10.1002/anie.201704616
  • Mahalapbutr, P., Charoenwongpaiboon, T., Phongern, C., Kongtaworn, N., Hannongbua, S., & Rungrotmongkol, T. (2021). Molecular encapsulation of a key odor-active 2-acetyl-1-pyrroline in aromatic rice with β-cyclodextrin derivatives. Journal of Molecular Liquids, 337, 116394. https://doi.org/10.1016/j.molliq.2021.116394
  • Mahalapbutr, P., Lee, V. S., & Rungrotmongkol, T. (2020). Binding hotspot and activation mechanism of maltitol and lactitol toward the human sweet taste receptor. Journal of Agricultural and Food Chemistry, 68(30), 7974–7983. https://doi.org/10.1021/acs.jafc.0c02580
  • Mahalapbutr, P., Sangkhawasi, M., Kammarabutr, J., Chamni, S., & Rungrotmongkol, T. (2020). Rosmarinic acid as a potent influenza neuraminidase inhibitor: In vitro and in silico study. Current Topics in Medicinal Chemistry, 20(23), 2046–2055. https://doi.org/10.2174/1568026619666191118110155
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Mann, T., Gerwat, W., Batzer, J., Eggers, K., Scherner, C., Wenck, H., Stäb, F., Hearing, V. J., Röhm, K.-H., & Kolbe, L. (2018). Inhibition of human tyrosinase requires molecular motifs distinctively different from mushroom tyrosinase. The Journal of Investigative Dermatology, 138(7), 1601–1608. https://doi.org/10.1016/j.jid.2018.01.019
  • Mechqoq, H., Hourfane, S., El Yaagoubi, M., El Hamdaoui, A., da Silva Almeida, J. R. G., Rocha, J. M., & El Aouad, N. (2022). Molecular docking, tyrosinase, collagenase, and elastase inhibition activities of argan by-products. Cosmetics, 9(1), 24. https://doi.org/10.3390/cosmetics9010024
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. III (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Noh, H., Lee, S. J., Jo, H.-J., Choi, H. W., Hong, S., & Kong, K.-H. (2020). Histidine residues at the copper-binding site in human tyrosinase are essential for its catalytic activities. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 726–732. https://doi.org/10.1080/14756366.2020.1740691
  • Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011). PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. Journal of Chemical Theory and Computation, 7(2), 525–537. https://doi.org/10.1021/ct100578z
  • Paudel, P. (2019). A new tyrosinase inhibitor from the red alga Symphyocladia latiuscula (Harvey) Yamada (Rhodomelaceae). Marine Drugs, 17(5), 295. https://doi.org/10.3390/md17050295
  • Pillaiyar, T., Manickam, M., & Namasivayam, V. (2017). Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 403–425. https://doi.org/10.1080/14756366.2016.1256882
  • Roe, D. R., & Cheatham, T. E. (2013). Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics. 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Salomon-Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Salvador, G. A., & Oteiza, P. I. (2011). Iron overload triggers redox-sensitive signals in human IMR-32 neuroblastoma cells. Neurotoxicology, 32(1), 75–82. https://doi.org/10.1016/j.neuro.2010.11.006
  • Sanachai, K., Aiebchun, T., Mahalapbutr, P., Seetaha, S., Tabtimmai, L., Maitarad, P., Xenikakis, I., Geronikaki, A., Choowongkomon, K., & Rungrotmongkol, T. (2021). Discovery of novel JAK2 and EGFR inhibitors from a series of thiazole-based chalcone derivatives. RSC Medicinal Chemistry, 12(3), 430–438. https://doi.org/10.1039/d0md00436g
  • Sanachai, K., Mahalapbutr, P., Sanghiran Lee, V., Rungrotmongkol, T., & Hannongbua, S. (2021). In silico elucidation of potent inhibitors and rational drug design against SARS-CoV-2 papain-like protease. The Journal of Physical Chemistry B, 125(50), 13644–13656. https://doi.org/10.1021/acs.jpcb.1c07060
  • Sansinenea, E., & Ortiz, A. (2015). Melanin: A photoprotection for Bacillus thuringiensis based biopesticides. Biotechnology Letters, 37(3), 483–490. https://doi.org/10.1007/s10529-014-1726-8
  • Tang, H., Cui, F., Li, H., Huang, Q., & Li, Y. (2018). Understanding the inhibitory mechanism of tea polyphenols against tyrosinase using fluorescence spectroscopy, cyclic voltammetry, oximetry, and molecular simulations. RSC Advances, 8(15), 8310–8318. https://doi.org/10.1039/C7RA12749A
  • Wu, G., Robertson, D. H., Brooks, C. L., & Vieth, M. (2003). Detailed analysis of grid-based molecular docking: a case study of CDOCKER-A CHARMm-based MD docking algorithm. Journal of Computational Chemistry, 24(13), 1549–1562. https://doi.org/10.1002/jcc.10306
  • York, D. M., Darden, T. A., & Pedersen, L. G. (1993). The effect of long‐range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods. Journal of Chemical Physics. 99(10), 8345–8348. https://doi.org/10.1063/1.465608

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.