173
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Withanolides of Athenaea velutina with potential inhibitory properties against SARS coronavirus main protease (mpro): molecular modeling studies

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 12267-12275 | Received 11 Aug 2022, Accepted 01 Jan 2023, Published online: 23 Jan 2023

References

  • Abdeljebbar, L. H., Benjouad, A., Morjani, H., Merghoub, N., El Haddar, S., Humam, M., Christen, P., Hostettmann, K., Bekkouche, K., & Amzazi, S. (2009). Antiproliferative effects of withanolides from Withania adpressa. Therapie, 64(2), 121–127. https://doi.org/10.2515/therapie/2009015
  • Amporndanai, K., Meng, X., Shang, W., Jin, Z., Rogers, M., Zhao, Y., Rao, Z., Liu, Z.-J., Yang, H., Zhang, L., O’Neill, P. M., & Samar Hasnain, S. (2021). Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nature Communications, 12(1), 1–7. https://doi.org/10.1038/s41467-021-23313-7
  • Arafet, K., Aparicio, N., Lodola, A., Mulholland, A., González, F., Świderek, K., & Moliner, V. (2021). Mechanism of inhibition of SARS-CoV-2 Mpro by N3 peptidyl Michael Acceptor explained by QM/MM simulations and design of new derivatives with tunable chemical reactivity. Chemical Science, 12(4), 1433–1444. https://doi.org/10.1039/D0SC06195F
  • Arfken, G. B., Weber, H. J., & Harris, F. E. (Eds.) (2013b). Preface. In Mathematical methods for physicists (7th ed., pp. xi–xiii). Academic Press. https://doi.org/10.1016/B978-0-12-384654-9.00032-3
  • Arfken, G. B., Weber, H. J., & Harris, F. E. (Eds.). (2013a). Front Matter. In mathematical methods for physicists (7th ed, piv). Academic Press. https://doi.org/10.1016/B978-0-12-384654-9.00030-X
  • Baitharu, I., Jain, V., Deep, S. N., Shroff, S., Sahu, J. K., Naik, P. K., & Ilavazhagan, G. (2014). Withanolide a prevents neurodegeneration by modulating hippocampal glutathione biosynthesis during hypoxia. PloS One, 9(10), e105311. https://doi.org/10.1371/journal.pone.0105311
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10037–10041. https://doi.org/10.1073/pnas.181342398
  • Ballesteros-Vivas, D., Alvarez-Rivera, G., León, C., Morantes, S. J., Ibánez, E., Parada-Alfonso, F., Cifuentes, A., & Valdés, A. (2019). Anti-proliferative bioactivity against HT-29 colon cancer cells of a withanolides-rich extract from golden berry (Physalis peruviana L.) calyx investigated by Foodomics. Journal of Functional Foods, 63, 103567. https://doi.org/10.1016/j.jff.2019.103567
  • Batista, P. H. J., de Lima, K. S. B., Pinto, F. C. L., Tavares, J. L., Uchoa, D. E. A., Costa-Lotufo, L. V., Rocha, D. D., Silveira, E. R., Bezerra, A. M. E., Canuto, K. M., & Pessoa, O. D. L. (2016). Withanolides from leaves of cultivated Acnistus arborescens. Phytochemistry, 130(2016), 321–327. https://doi.org/10.1016/j.phytochem.2016.07.003
  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Bezerra, L. L., Almeida-Neto, F. W. Q., Marinho, M. M., Santos Oliveira, L., Teixeira, A. M. R., Bandeira, P. N., dos Santos, H. S., Lima-Neto, P. d., & Marinho, E. S. (2022). Synthesis of aminochalcones and in silico evaluation of their antiparasitic potential against Leishmania. Journal of Biomolecular Structure and Dynamics, 1, 1–8. https://doi.org/10.1080/07391102.2022.2103030
  • Bhattacharya, S. K., Bhattacharya, A., Sairam, K., & Ghosal, S. (2000). Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: An experimental study. Phytomedicine: international Journal of Phytotherapy and Phytopharmacology, 7(6), 463–469. https://doi.org/10.1016/S0944-7113(00)80030-6
  • Bruker AXS Inc. (2018b). Bruker SAINT.
  • Bruker AXS Inc. (2018a). APEX III. https://www.bruker.com/en/products-and-solutions/diffractometers-and-scattering-systems/single-crystal-x-ray-diffractometers/sc-xrd-software/apex.html
  • Budhiraja, R., Krishan, P., & Sudhir, S. (2000). Biological activity of withanolides. Journal of Scientific and Industrial Research (JSIR, )59(11), 904–911.
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Cao, C. M., Wu, X., Kindscher, K., Xu, L., & Timmermann, B. N. (2015). Withanolides and sucrose esters from Physalis neomexicana. Journal of Natural Products, 78(10), 2488–2493. https://doi.org/10.1021/acs.jnatprod.5b00698
  • Dhawan, M., Parmar, M., Sharun, K., Tiwari, R., Bilal, M., & Dhama, K. (2021). Medicinal and therapeutic potential of withanolides from Withania somnifera against COVID-19. Journal of Applied Pharmaceutical Science, 11(4), 006–013. https://doi.org/10.7324/JAPS.2021.110402
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2009). Gaussian 9. Gaussian, Inc.
  • Gao, K., Wang, R., Chen, J., Cheng, L., Frishcosy, J., Huzumi, Y., Qiu, Y., Schluckbier, T., & Wei, G.-W. (2021). Methodology-centered review of molecular modeling, simulation, and prediction of SARS-CoV-2. Journal of Molecular Structures, 122(13), 1225.
  • Holt, P. A., Chaires, J. B., & Trent, J. O. (2008). Molecular docking of intercalators and groove-binders to nucleic acids using Autodock and Surflex. Journal of Chemical Information and Modeling, 48(8), 1602–1615. https://doi.org/10.1021/ci800063v
  • Houchi, S., & Messasma, Z. (2022). Exploring the inhibitory potential of Saussurea costus and Saussurea involucrata phytoconstituents against the Spike glycoprotein receptor binding domain of SARS-CoV-2 Delta (B.1.617.2) variant and the main protease (Mpro) as therapeutic candidates, using molecular docking, DFT, and ADME/Tox studies. Journal of Molecular Structure, 1263, 133032. https://doi.org/10.1016/j.molstruc.2022.133032
  • Khanal, P., Chikhale, R., Dey, Y. N., Pasha, I., Chand, S., Gurav, N., Ayyanar, M., Patil, B. M., & Gurav, S. (2021). Withanolides from Withania somnifera as an immunity booster and their therapeutic options against COVID-19. Journal of Biomolecular Structure and Dynamics, 40(12), 5295–5308. https://doi.org/10.1080/07391102.2020.1869588
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review. B, Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Llanos, G. G., Araujo, L. M., Jiménez, I. A., Moujir, L. M., Rodríguez, J., Jiménez, C., & Bazzocchi, I. L. (2017). Structure-based design, synthesis, and biological evaluation of withaferin A-analogues as potent apoptotic inducers. European Journal of Medicinal Chemistry, 140, 52–64. https://doi.org/10.1016/j.ejmech.2017.09.004
  • MacKerell, A. D., Jr., Banavali, N., & Foloppe, N. (2000). Development and current status of the CHARMM force field for nucleic acids. Biopolymers, 56(4), 257–265. https://doi.org/10.1002/1097-0282(2000)56:4 < 257::AID-BIP10029 > 3.0.CO;2-W
  • Matos, G. C., da Silva, M., Almeida-Neto, W. Q. F., Marinho, M. E., de Menezes, R. R. P. P. B., Sampaio, T. L., da Rocha, M. N., Ribeiro, L. R., Magalhães, E. P., Teixeira, A. M. R., dos Santos, H. C., Marinho, E. S., de Lima-Neto, P., Martins, A. M. C., Monteiro, N. K. V., & Marinho, M. M. (2022). Quantum mechanical, molecular docking, molecular dynamics, ADMET and antiproliferative activity on Trypanosoma cruzi (Y strain) of chalcone (E)-1-(2-hydroxy-3{,}4{,}6-trimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one derived from a natural product. Physical Chemistry Chemical Physics: PCCP, 24(8), 5052–5069. https://doi.org/10.1039/D1CP04992E
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629–661. https://doi.org/10.1021/acs.jnatprod.5b01055
  • Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
  • Nittala, S. S., & Lavie, D. (1981). Withanolides of Acnistus breviflorus. Phytochemistry, 20(12), 2735–2739. https://doi.org/10.1016/0031-9422(81)85277-6
  • Nosé, S., & Klein, M. L. (1983). Constant pressure molecular dynamics for molecular systems. Molecular Physics, 50(5), 1055–1076. https://doi.org/10.1080/00268978300102851
  • Petersson, G. A., Bennett, A., Tensfeldt, T. G., Al-Laham, M. A., Shirley, W. A., & Mantzaris, J. (1988). A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. The Journal of Chemical Physics, 89(4), 2193–2218. https://doi.org/10.1063/1.455064
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Reddy, M., Reddy, C., Rathore, R., Erion, M., Aparoy, P., Reddy, R., & Reddanna, P. (2014). Free energy calculations to estimate ligand-binding affinities in structure-based drug design. Current Pharmaceutical Design, 20(20), 3323–3337. https://doi.org/10.2174/13816128113199990604
  • Sheldrick, G. M. (1996). SADABS. Program for empirical absorption correction for area detector data. University of Göttingen.
  • Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica. Section A, Foundations of Crystallography, 64(Pt 1), 112–122. https://doi.org/10.1107/S0108767307043930
  • Sheldrick, G. M. (2015). SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallographica. Section A, Foundations and Advances, 71(Pt 1), 3–8. https://doi.org/10.1107/S2053273314026370
  • Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the agonizing pain. Carnegie Mellon University. https://doi.org/10.5555/865018
  • Shohat, B., & Joshua, H. (1971). The effect of withaferin A on plant cells. European Journal of Cancer, 7(6), 561–563. https://doi.org/10.1016/0014-2964(71)90063-6
  • Troeger, C. (2022). Just how do deaths due to COVID-19 stack up? Think Global Health. https://www.thinkglobalhealth.org/article/just-how-do-deaths-due-covid-19-stack
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), NA–NA. https://doi.org/10.1002/jcc.21334
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vosko, S. H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Canadian Journal of Physics, 59, 1200. https://doi.org/10.1139/p80-159
  • White, P. T., Subramanian, C., Motiwala, H. F., & Cohen, M. S. (2016). Natural withanolides in the treatment of chronic diseases. Advances in Experimental Medicine and Biology, 928, 329–373. https://doi.org/10.1007/978-3-319-41334-1_14
  • Yang, Y., Xiang, K., Sun, D., Zheng, M., Song, Z., Li, M., Wang, X., Li, H., & Chen, L. (2021). Withanolides from dietary tomatillo suppress HT1080 cancer cell growth by targeting mutant IDH1. Bioorganic & Medicinal Chemistry, 36, 116095. https://doi.org/10.1016/j.bmc.2021.116095
  • Yusuf, D., Davis, A. M., Kleywegt, G. J., & Schmitt, S. (2008). An alternative method for the evaluation of docking performance: RSR vs RMSD. Journal of Chemical Information and Modeling, 48(7), 1411–1422. https://doi.org/10.1021/ci800084x
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/jcc.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.