301
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

In silico design of a multi-epitope vaccine against the spike and the nucleocapsid proteins of the Omicron variant of SARS-CoV-2

, , , ORCID Icon & ORCID Icon
Pages 11748-11762 | Received 02 Aug 2022, Accepted 22 Dec 2022, Published online: 26 Jan 2023

References

  • Aasim, Sharma, R., Patil, C. R., Kumar, A., & Sharma, K. (2022). Identification of vaccine candidate against Omicron variant of SARS-CoV-2 using immunoinformatic approaches. In Silico Pharmacology, 10(1), 12. https://doi.org/10.1007/s40203-022-00128-y
  • Abdelmageed, M. I., Abdelmoneim, A. H., Mustafa, M., I., Elfadol, N. M., Murshed, N. S. Shantier, S. W., & Makhawi, A. M. (2020). Design of a multiepitope-based peptide vaccine against the e protein of human COVID-19: An immunoinformatics approach. BioMed Research International, 2020, 1–12. https://doi.org/10.1155/2020/2683286
  • Aboudounya, M. M., & Heads, R. J. (2021). COVID-19 and toll-like receptor 4 (TLR4): SARS-CoV-2 may bind and activate TLR4 to increase ACE2 expression, facilitating entry and causing hyperinflammation. Mediators of Inflammation, 2021, 8874339. https://doi.org/10.1155/2021/8874339
  • Al Zamane, S., Nobel, F. A., Jebin, R. A., Amin, M. B., Somadder, P. D., Antora, N. J., Hossain, M. I., Islam, M. J., Ahmed, K., & Moni, M. A. (2021). Development of an in silico multi-epitope vaccine against SARS-COV-2 by précised immune-informatics approaches. Informatics in Medicine Unlocked, 27, 100781. https://doi.org/10.1016/j.imu.2021.100781
  • Andrews, N., Stowe, J., Kirsebom, F., Toffa, S., Rickeard, T., Gallagher, E., Gower, C., Kall, M., Groves, N., O'Connell, A.-M., Simons, D., Blomquist, P. B., Zaidi, A., Nash, S., Iwani Binti Abdul Aziz, N., Thelwall, S., Dabrera, G., Myers, R., Amirthalingam, G., … Lopez Bernal, J. (2022). Covid-19 vaccine effectiveness against the Omicron (B.1.1.529) Variant. The New England Journal of Medicine, 386(16), 1532–1546. https://doi.org/10.1056/NEJMoa2119451
  • Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S. A., Rouphael, N., Creech, C. B., McGettigan, J., Khetan, S., Segall, N., Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil, K., Corey, L., … Zaks, T, COVE Study Group (2021). Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. The New England Journal of Medicine, 384(5), 403–416. https://doi.org/10.1056/NEJMoa2035389
  • Bayani, F., Safaei Hashkavaei, N., Uversky, V. N., Mozaffari-Jovin, S., & Sefidbakht, Y. (2022). Insights into the structural peculiarities of the N-terminal and receptor binding domains of the spike protein from the SARS-CoV-2 Omicron variant. Computers in Biology and Medicine, 147, 105735. https://doi.org/10.1016/j.compbiomed.2022.105735
  • Brandão, S. C. S., Ramos, J. d O. X., Dompieri, L. T., Godoi, E. T. A. M., Figueiredo, J. L., Sarinho, E. S. C., Chelvanambi, S., & Aikawa, M. (2021). Is Toll-like receptor 4 involved in the severity of COVID-19 pathology in patients with cardiometabolic comorbidities? Cytokine & Growth Factor Reviews, 58, 102–110. https://doi.org/10.1016/j.cytogfr.2020.09.002
  • Buchan, D. W. A., & Jones, D. T. (2019). The PSIPRED protein analysis workbench: 20 years on. Nucleic acids Research, 47(W1), W402–W407. https://doi.org/10.1093/nar/gkz297
  • Bui, H.-H., Sidney, J., Dinh, K., Southwood, S., Newman, M. J., & Sette, A. (2006). Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 7(1), 153. https://doi.org/10.1186/1471-2105-7-153
  • Chen, R. (2012). Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnology Advances, 30(5), 1102–1107. https://doi.org/10.1016/j.biotechadv.2011.09.013
  • Cobar, O., & Cobar, S. (2022). What We Know About BQ.1, BQ.1.1, BF7 and XBB, The New Omicron Sub-lineages. https://doi.org/10.13140/RG.2.2.21575.57761
  • Cubuk, J., Alston, J. J., Incicco, J. J., Singh, S., Stuchell-Brereton, M. D., Ward, M. D., Zimmerman, M. I., Vithani, N., Griffith, D., Wagoner, J. A., Bowman, G. R., Hall, K. B., Soranno, A., & Holehouse, A. S. (2021). The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nature Communications, 12(1), 1936. https://doi.org/10.1038/s41467-021-21953-3
  • Desingu, P. A., & Nagarajan, K. (2022). The emergence of Omicron lineages BA.4 and BA.5, and the global spreading trend. Journal of Medical Virology, 94(11), 5077–5079. https://doi.org/10.1002/jmv.27967
  • Desta, I. T., Porter, K. A., Xia, B., Kozakov, D., & Vajda, S. (2020). Performance and its limits in rigid body protein-protein docking. Structure (London, England: 1993), 28(9), 1071–1081.e3. https://doi.org/10.1016/j.str.2020.06.006
  • Dhanda, S. K., Gupta, S., Vir, P., & Raghava, G. P. S. (2013). Prediction of IL4 inducing peptides. Clinical & Developmental Immunology, 2013, 263952–263959. https://doi.org/10.1155/2013/263952
  • Dhanda, S. K., Vir, P., & Raghava, G. P. (2013). Designing of interferon-gamma inducing MHC class-II binders. Biology Direct, 8(1), 30. https://doi.org/10.1186/1745-6150-8-30
  • Dimitrov, I., Flower, D. R., & Doytchinova, I. (2013). AllerTOP – A server for in silico prediction of allergens. BMC Bioinformatics, 14(S6), S4. https://doi.org/10.1186/1471-2105-14-S6-S4
  • Dimitrov, I., Naneva, L., Doytchinova, I., & Bangov, I. (2014). AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics (Oxford, England), 30(6), 846–851. https://doi.org/10.1093/bioinformatics/btt619
  • Dong, R., Chu, Z., Yu, F., & Zha, Y. (2020). Contriving multi-epitope subunit of vaccine for COVID-19: Immunoinformatics approaches. Frontiers in Immunology, 11, 1784. https://doi.org/10.3389/fimmu.2020.01784
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4
  • Dubendorf, J. W., & Studier, F. W. (1991). Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. Journal of Molecular Biology, 219(1), 45. 59. https://doi.org/10.1016/0022-2836(91)90856-2
  • Falsey, A. R., Sobieszczyk, M. E., Hirsch, I., Sproule, S., Robb, M. L., Corey, L., Neuzil, K. M., Hahn, W., Hunt, J., Mulligan, M. J., McEvoy, C., DeJesus, E., Hassman, M., Little, S. J., Pahud, B. A., Durbin, A., Pickrell, P., Daar, E. S., Bush, L., … Gonzalez-Lopez, A, AstraZeneca AZD1222 Clinical Study Group (2021). Phase 3 safety and efficacy of AZD1222 (ChAdOx1 nCoV-19) Covid-19 vaccine. The New England Journal of Medicine, 385(25), 2348–2360. https://doi.org/10.1056/NEJMoa2105290
  • Ferris, L. K., Mburu, Y. K., Mathers, A. R., Fluharty, E. R., Larregina, A. T., Ferris, R. L., & Falo, L. D. (2013). Human beta-defensin 3 induces maturation of human Langerhans cell–like dendritic cells: An antimicrobial peptide that functions as an endogenous adjuvant. The Journal of Investigative Dermatology, 133(2), 460–468. https://doi.org/10.1038/jid.2012.319
  • Fratev, F. (2021). N501Y and K417N mutations in the spike protein of SARS-CoV-2 alter the interactions with both hACE2 and human-derived antibody: A free energy of perturbation retrospective study.Journal of Chemical Information and Modeling, 61(12), 6079–6084. https://doi.org/10.1021/acs.jcim.1c01242
  • Fraussen, J. (2022). IgM responses following SARS-CoV-2 vaccination: Insights into protective and pre-existing immunity. EBioMedicine, 77, 103922. https://doi.org/10.1016/j.ebiom.2022.103922
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy Server. The Proteomics Protocols Handbook (pp. 571–607). Humana Press. https://doi.org/10.1385/1-59259-890-0:571
  • Gay, G., Wagner, D. T., Keatinge-Clay, A. T., & Gay, D. C. (2014). Rapid modification of the pET-28 expression vector for ligation independent cloning using homologous recombination in Saccharomyces cerevisiae. Plasmid, 76, 66–71. https://doi.org/10.1016/j.plasmid.2014.09.005
  • Ghasemlou, A., Uskoković, V., & Sefidbakht, Y. (2022). Exploration of potential inhibitors for SARS‐CoV‐2 Mpro considering its mutants via structure‐based drug design, molecular docking, MD simulations, MM/PBSA, and DFT calculations. Biotechnology and Applied Biochemistry. https://doi.org/10.1002/bab.2369
  • Ghassemlou, A., Sefidbakht, Y., & Rahmandoust, M. (2021). The main protease of SARS COV-2 and its specific inhibitors. COVID-19 (pp. 121–147). Springer Singapore. https://doi.org/10.1007/978-981-16-3108-5_4
  • Grant, B. J., Skjaerven, L., & Yao, X.-Q. (2021). The Bio3D packages for structural bioinformatics. Protein Science: A Publication of the Protein Society, 30(1), 20–30. https://doi.org/10.1002/pro.3923
  • Grote, A., Hiller, K., Scheer, M., Munch, R., Nortemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–W531. https://doi.org/10.1093/nar/gki376
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. S, Open Source Drug Discovery Consortium (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One. 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Hebditch, M., Carballo-Amador, M. A., Charonis, S., Curtis, R., & Warwicker, J. (2017). Protein–Sol: A web tool for predicting protein solubility from sequence. Bioinformatics (Oxford, England), 33(19), 3098–3100. https://doi.org/10.1093/bioinformatics/btx345
  • Heo, L., Park, H., & Seok, C. (2013). GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic acids Research, 41(Web Server issue), W384–W388. https://doi.org/10.1093/nar/gkt458
  • Hoover, D. M., Wu, Z., Tucker, K., Lu, W., & Lubkowski, J. (2003). Antimicrobial characterization of human β-Defensin 3 derivatives. Antimicrobial Agents and Chemotherapy, 47(9), 2804–2809. https://doi.org/10.1128/AAC.47.9.2804-2809.2003
  • Jacob, K. S., Ganguly, S., Kumar, P., Poddar, R., & Kumar, A. (2017). Homology model, molecular dynamics simulation and novel pyrazole analogs design of Candida albicans CYP450 lanosterol 14 α-demethylase, a target enzyme for antifungal therapy. Journal of Biomolecular Structure & Dynamics, 35(7), 1446–1463. https://doi.org/10.1080/07391102.2016.1185380
  • Kagami, L. P., das Neves, G. M., Timmers, L. F. S. M., Caceres, R. A., & Eifler-Lima, V. L. (2020). Geo-measures: A PyMOL plugin for protein structure ensembles analysis. Computational Biology and Chemistry, 87, 107322. https://doi.org/10.1016/j.compbiolchem.2020.107322
  • Kar, T., Narsaria, U., Basak, S., Deb, D., Castiglione, F., Mueller, D. M., & Srivastava, A. P. (2020). A candidate multi-epitope vaccine against SARS-CoV-2. Scientific Reports, 10(1), 10895. https://doi.org/10.1038/s41598-020-67749-1
  • Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305(3), 567–580. https://doi.org/10.1006/jmbi.2000.4315
  • Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8(1), 424. https://doi.org/10.1186/1471-2105-8-424
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation, 12(1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935
  • Mahdevar, E., Kefayat, A., Safavi, A., Behnia, A., Hejazi, S. H., Javid, A., & Ghahremani, F. (2021). Immunoprotective effect of an in silico designed multiepitope cancer vaccine with BORIS cancer-testis antigen target in a murine mammary carcinoma model. Scientific Reports, 11(1), 23121. https://doi.org/10.1038/s41598-021-01770-w
  • Mahdevar, E., Safavi, A., Abiri, A., Kefayat, A., Hejazi, S. H., Miresmaeili, S. M., & Iranpur Mobarakeh, V. (2022). Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on immunoinformatics approaches. Journal of Biomolecular Structure & Dynamics, 40(14), 6363–6380. https://doi.org/10.1080/07391102.2021.1883111
  • Mustafa, Z., Kalbacher, H., & Burster, T. (2022). Occurrence of a novel cleavage site for cathepsin G adjacent to the polybasic sequence within the proteolytically sensitive activation loop of the SARS-CoV-2 Omicron variant: The amino acid substitution N679K and P681H of the spike protein. PloS One, 17(4), e0264723. https://doi.org/10.1371/journal.pone.0264723
  • Nagpal, G., Usmani, S. S., Dhanda, S. K., Kaur, H., Singh, S., Sharma, M., & Raghava, G. P. S. (2017). Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential. Scientific Reports, 7(1), 42851. https://doi.org/10.1038/srep42851
  • Navyashree, V., Kant, K., & Kumar, A. (2021). Natural chemical entities from Arisaema genus might be a promising break-through against Japanese encephalitis virus infection: A molecular docking and dynamics approach. Journal of Biomolecular Structure & Dynamics, 39(4), 1404–1416. https://doi.org/10.1080/07391102.2020.1731603
  • Naz, A., Shahid, F., Butt, T. T., Awan, F. M., Ali, A., & Malik, A. (2020). Designing multi-epitope vaccines to combat emerging coronavirus disease 2019 (COVID-19) by employing immuno-informatics approach. Frontiers in Immunology, 11, 1663. https://doi.org/10.3389/fimmu.2020.01663
  • Nielsen, H. (2017). Predicting secretory proteins with SignalP. In Methods in molecular biology (Vol.1611, 59–73). Clifton, N.J. https://doi.org/10.1007/978-1-4939-7015-5_6
  • Ou, J., Lan, W., Wu, X., Zhao, T., Duan, B., Yang, P., Ren, Y., Quan, L., Zhao, W., Seto, D., Chodosh, J., Luo, Z., Wu, J., & Zhang, Q. (2022). Tracking SARS-CoV-2 Omicron diverse spike gene mutations identifies multiple inter-variant recombination events. Signal Transduction and Targeted Therapy, 7(1), 138. https://doi.org/10.1038/s41392-022-00992-2
  • Parmar, M., Thumar, R., Sheth, J., & Patel, D. (2022). Designing multi-epitope based peptide vaccine targeting spike protein SARS-CoV-2 B1.1.529 (Omicron) variant using computational approaches. Structural Chemistry, 33(6), 2243–2260. https://doi.org/10.1007/s11224-022-02027-6
  • Parn, S., Savsani, K., & Dakshanamurthy, S. (2022). SARS-CoV-2 Omicron (BA.1 and BA.2) specific novel CD8+ and CD4+ T cell epitopes targeting spike protein. Immunoinformatics (Amsterdam, Netherlands), 8, 100020. https://doi.org/10.1016/j.immuno.2022.100020
  • Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W., Hammitt, L. L., … Gruber, W. C, C4591001 Clinical Trial Group (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine.The New England Journal of Medicine, 383(27), 2603–2615. https://doi.org/10.1056/NEJMoa2034577
  • Rafi, M. O., Al-Khafaji, K., Sarker, M. T., Taskin-Tok, T., Rana, A. S., & Rahman, M. S. (2022). Design of a multi-epitope vaccine against SARS-CoV-2: Immunoinformatic and computational methods. RSC Advances, 12(7), 4288–4310. https://doi.org/10.1039/D1RA06532G
  • Rapin, N., Lund, O., & Castiglione, F. (2011). Immune system simulation online. Bioinformatics (Oxford, England), 27(14), 2013–2014. https://doi.org/10.1093/bioinformatics/btr335
  • Renu, K., Subramaniam, M. D., Chakraborty, R., Myakala, H., Iyer, M., Bharathi, G., Siva, K., Vellingiri, B., & Valsala Gopalakrishnan, A. (2020). The role of Interleukin-4 in COVID-19 associated male infertility – A hypothesis. Journal of Reproductive Immunology, 142, 103213. https://doi.org/10.1016/j.jri.2020.103213
  • Rezaei, S., Pereira, F., Uversky, V. N., & Sefidbakht, Y. (2022). Molecular dynamics and intrinsic disorder analysis of the SARS-CoV-2 Nsp1 structural changes caused by substitution and deletion mutations. Molecular Simulation, 48(13), 1192–1201. https://doi.org/10.1080/08927022.2022.2075546
  • Rezaei, S., Sefidbakht, Y., & Uskoković, V. (2021). Tracking the pipeline: Immunoinformatics and the COVID-19 vaccine design. Briefings in Bioinformatics, 22(6), bbab241. https://doi.org/10.1093/bib/bbab241
  • Rezaei, S., Sefidbakht, Y., & Uskoković, V. (2022). Comparative molecular dynamics study of the receptor-binding domains in SARS-CoV-2 and SARS-CoV and the effects of mutations on the binding affinity. Journal of Biomolecular Structure & Dynamics, 40(10), 4662–4681. https://doi.org/10.1080/07391102.2020.1860829
  • Safavi, A., Kefayat, A., Abiri, A., Mahdevar, E., Behnia, A. H., & Ghahremani, F. (2019c). In silico analysis of transmembrane protein 31 (TMEM31) antigen to design novel multiepitope peptide and DNA cancer vaccines against melanoma. Molecular Immunology, 112, 93–102. https://doi.org/10.1016/j.molimm.2019.04.030
  • Safavi, A., Kefayat, A., Mahdevar, E., Abiri, A., & Ghahremani, F. (2020). Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine, 38(48), 7612–7628. https://doi.org/10.1016/j.vaccine.2020.10.016
  • Safavi, A., Kefayat, A., Sotoodehnejadnematalahi, F., Salehi, M., & Modarressi, M. H. (2019a). Production, purification, and in vivo evaluation of a novel multiepitope peptide vaccine consisted of immunodominant epitopes of SYCP1 and ACRBP antigens as a prophylactic melanoma vaccine. International Immunopharmacology, 76, 105872. https://doi.org/10.1016/j.intimp.2019.105872
  • Safavi, A., Kefayat, A., Sotoodehnejadnematalahi, F., Salehi, M., & Modarressi, M. H. (2019b). In silico analysis of synaptonemal complex protein 1 (SYCP1) and acrosin binding protein (ACRBP) antigens to design novel multiepitope peptide cancer vaccine against breast cancer. International Journal of Peptide Research and Therapeutics, 25(4), 1343–1359. https://doi.org/10.1007/s10989-018-9780-z
  • Saha, S., & Raghava, G. P. S. (2006). Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins, 65(1), 40–48. https://doi.org/10.1002/prot.21078
  • Sarkar, B., Ullah, M. A., Araf, Y., & Rahman, M. S. (2020). Engineering a novel subunit vaccine against SARS-CoV-2 by exploring immunoinformatics approach. Informatics in Medicine Unlocked, 21, 100478. https://doi.org/10.1016/j.imu.2020.100478
  • Schrodinger LLC. (2010). The PyMOL molecular graphics system. Version 1.5.0.
  • Shilling, P., Mirzadeh, K., Cumming, A., Widesheim, M., Köck, Z., & Daley, D. (2020). Improved designs for pET expression plasmids increase protein production yield in Escherichia coli. Communications Biology, 3(1), 214. https://doi.org/10.1038/s42003-020-0939-8
  • Tuekprakhon, A., Nutalai, R., Dijokaite-Guraliuc, A., Zhou, D., Ginn, H. M., Selvaraj, M., Liu, C., Mentzer, A. J., Supasa, P., Duyvesteyn, H. M. E., Das, R., Skelly, D., Ritter, T. G., Amini, A., Bibi, S., Adele, S., Johnson, S. A., Constantinides, B., Webster, H., … Screaton, G. R, ISARIC4C Consortium (2022). Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. Cell, 185(14), 2422–2433.e13. https://doi.org/10.1016/j.cell.2022.06.005
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Vita, R., Mahajan, S., Overton, J. A., Dhanda, S. K., Martini, S., Cantrell, J. R., Wheeler, D. K., Sette, A., & Peters, B. (2019). The immune epitope database (IEDB): 2018 update. Nucleic Acids Research, 47(D1), D339–D343. https://doi.org/10.1093/nar/gky1006
  • Vita, R., Overton, J. A., Greenbaum, J. A., Ponomarenko, J., Clark, J. D., Cantrell, J. R., Wheeler, D. K., Gabbard, J. L., Hix, D., Sette, A., & Peters, B. (2015). The immune epitope database (IEDB) 3.0. Nucleic Acids Research, 43(Database issue), D405–D412. https://doi.org/10.1093/nar/gku938
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Yang, Z., Bogdan, P., & Nazarian, S. (2021). An in silico deep learning approach to multi-epitope vaccine design: A SARS-CoV-2 case study. Scientific Reports, 11(1), 3238. https://doi.org/10.1038/s41598-021-81749-9
  • Zheng, W., Zhang, C., Li, Y., Pearce, R., Bell, E. W., & Zhang, Y. (2021). Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Reports Methods, 1(3), 100014. https://doi.org/10.1016/j.crmeth.2021.100014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.