276
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Design of novel anti-cancer drugs targeting TRKs inhibitors based 3D QSAR, molecular docking and molecular dynamics simulation

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 11657-11670 | Received 12 Nov 2022, Accepted 22 Dec 2022, Published online: 25 Jan 2023

References

  • Ai, Y., Wang, S. T., Tang, C., Sun, P. H., & Song, F. J. (2010). 3D-QSAR and docking studies on pyridopyrazinones as BRAF inhibitors. Medicinal Chemistry Research, 20(8), 1298–1317. https://doi.org/10.1007/S00044-010-9468-1
  • Alexander, D. L. J., Tropsha, A., & Winkler, D. A. (2015). Beware of R2: simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. Journal of Chemical Information and Modeling, 55(7), 1316–1322. https://doi.org/10.1021/acs.jcim.5b00206
  • AutoDock (n.d.). Retrieved March 11, 2022, from https://autodock.scripps.edu/
  • Bernard-Gauthier, V., Bailey, J. J., Aliaga, A., Kostikov, A., Rosa-Neto, P., Wuest, M., Brodeur, G. M., Bedell, B. J., Wuest, F., & Schirrmacher, R. (2015). Development of subnanomolar radiofluorinated (2-pyrrolidin-1-yl)imidazo[1,2-b]pyridazine pan-Trk inhibitors as candidate PET imaging probes. MedChemComm, 6(12), 2184–2193. https://doi.org/10.1039/C5MD00388A
  • Bhatia, S., Singh, M., Singh, T., & Singh, V. (2022). Scrutinizing the therapeutic potential of PROTACs in the management of Alzheimer’s disease. Neurochemical Research, 48(1), 13-25. https://doi.org/10.1007/S11064-022-03722-W
  • Bizzarri, A. R., & Cannistraro, S. (2002). Molecular dynamics of water at the protein-solvent interface. Journal of Physical Chemistry B, 106(26), 6617–6633. https://doi.org/10.1021/JP020100M/ASSET/IMAGES/LARGE/JP020100MF00011.JPEG
  • Böhm, M., St Rzebecher, J., & Klebe, G. (1999). Three-dimensional quantitative structure − activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa. Journal of Medicinal Chemistry, 42(3), 458–477. https://doi.org/10.1021/JM981062R
  • Bringmann, G., & Rummey, C. (2003). 3D QSAR investigations on antimalarial naphthylisoquinoline alkaloids by comparative molecular similarity indices analysis (CoMSIA). Journal of Chemical Information and Computer Sciences, 43(1), 304–316. https://doi.org/10.1021/CI025570S
  • Burnet, M., Walter, F. R. S., & Hall, E. (1957). Cancer—a biological approach: III. Viruses associated with neoplastic conditions. British Medical Journal, 1(5023), 841–847. https://doi.org/10.1136/BMJ.1.5023.841
  • Cancer (n.d.). Retrieved October 5, 2022, from https://www.who.int/fr/news-room/fact-sheets/detail/cancer
  • Cancer Statistics, 2022 (2022). Retrieved on 5 October 2022, https://doi.org/10.3322/caac.21708
  • Chohan, T. A., Chen, J. J., Qian, H. Y., Pan, Y. L., & Chen, J. Z. (2016). Molecular modeling studies to characterize N-phenylpyrimidin-2-amine selectivity for CDK2 and CDK4 through 3D-QSAR and molecular dynamics simulations. Molecular bioSystems, 12(4), 1250–1268. https://doi.org/10.1039/C5MB00860C
  • Drilon, A. (2019). TRK inhibitors in TRK fusion-positive cancers. Annals of Oncology, 30, viii23–viii30. https://doi.org/10.1093/ANNONC/MDZ282
  • Er-rajy, M., El Fadili, M., Hadni, H., Mrabti, N. N., Zarougui, S., & Elhallaoui, M. (2022). 2D-QSAR modeling, drug-likeness studies, ADMET prediction, and molecular docking for anti-lung cancer activity of 3-substituted-5-(phenylamino) indolone derivatives. Structural Chemistry, 33, 0123456789. https://doi.org/10.1007/s11224-022-01913-3
  • Er-rajy, M., E. L., Fadili, M., Mrabti, N. N., Zarougui, S., & Elhallaoui, M. (2022). QSAR, molecular docking, ADMET properties in silico studies for a series of 7-propanamide benzoxaboroles as potent anti-cancer agents. Chinese Journal of Analytical Chemistry, 50(12), 100163. https://doi.org/10.1016/J.CJAC.2022.100163
  • Er-rajy, M., Sidi, U., Ben, M., Faculte, A., Dhar, S., Mahraz-Fes, E., Mrabti, N. N., & Zarougui, S. (2022). Design of novel benzylidenecyclohexenones derivatives as potential anti-cancer inhibitors using 3D-QSAR, pharmacokinetics, and molecular docking studies. https://doi.org/10.21203/rs.3.rs-1510373/v1
  • Fadili, M. E., Er-Rajy, M., Imtara, H., Kara, M., Zarougui, S., Altwaijry, N., Kamaly, O. A., Sfouk, A. A., & Elhallaoui, M. (2022). 3D-QSAR, ADME-Tox in silico prediction and molecular docking studies for modeling the analgesic activity against neuropathic pain of novel NR2B-selective NMDA receptor antagonists. Processes, 10(8), 1462. https://doi.org/10.3390/PR10081462
  • Fadili, M. E., Er-Rajy, M., Kara, M., Assouguem, A., Belhassan, A., Alotaibi, A., Mrabti, N. N., Fidan, H., Ullah, R., Ercisli, S., Zarougui, S., & Elhallaoui, M. (2022). QSAR, ADMET in silico pharmacokinetics, molecular docking and molecular dynamics studies of novel bicyclo (aryl methyl) benzamides as potent GlyT1 inhibitors for the treatment of schizophrenia. Pharmaceuticals, 15(6), 670. https://doi.org/10.3390/PH15060670
  • Fidan, O., Mujwar, S., & Kciuk, M. (2022). Discovery of adapalene and dihydrotachysterol as antiviral agents for the Omicron variant of SARS-CoV-2 through computational drug repurposing. Molecular Diversity, 1-13. https://doi.org/10.1007/s11030-022-10440-6
  • Free Download: BIOVIA Discovery Studio Visualizer – Dassault Systèmes (n.d.). Retrieved August 24, 2022, from https://discover.3ds.com/discovery-studio-visualizer-download
  • Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y. D., Lee, K. H., & Tropsha, A. (2003). Rational selection of training and test sets for the development of validated QSAR models. Journal of Computer-Aided Molecular Design, 17(2–4), 241–253. https://doi.org/10.1023/A:1025386326946
  • Guo, Y., Xiao, J., Guo, Z., Chu, F., Cheng, Y., & Wu, S. (2005). Exploration of a binding mode of indole amide analogues as potent histone deacetylase inhibitors and 3D-QSAR analyses. Bioorganic & Medicinal Chemistry, 13(18), 5424–5434. https://doi.org/10.1016/J.BMC.2005.05.016
  • Gupta, N., Qayum, A., Singh, S., Mujwar, S., & Sangwan, P. L. (2022a). Isolation, anticancer evaluation, molecular docking, drug likeness and ADMET studies of secondary metabolites from Psoralea corylifolia seeds. ChemistrySelect, 7(41), 1-11. https://doi.org/10.1002/SLCT.202202115
  • Gupta, N., Qayum, A., Singh, S., Mujwar, S., & Sangwan, P. L. (2022b). Isolation, cytotoxicity evaluation, docking, ADMET and drug likeness studies of secondary metabolites from the stem bark of Anthocephalus cadamba (Roxb). ChemistrySelect, 7(43), e202202950. https://doi.org/10.1002/SLCT.202202950
  • Huang, E. J., & Reichardt, L. F. (2001). Neurotrophins: roles in neuronal development and function. Annual Review of Neuroscience, 24, 677–736. https://doi.org/10.1146/ANNUREV.NEURO.24.1.677
  • Huang, S., Feng, K., & Ren, Y. (2019). Molecular modelling studies of quinazolinone derivatives as MMP-13 inhibitors by QSAR, molecular docking and molecular dynamics simulations techniques. MedChemComm, 10(1), 101–115. https://doi.org/10.1039/C8MD00375K
  • Jain, A. N. (2003). Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine. Journal of Medicinal Chemistry, 46(4), 499–511. https://doi.org/10.1021/JM020406H/ASSET/IMAGES/MEDIUM/JM020406HN00001.GIF
  • Kang, J. H., Kim, S. Y., Lee, J., Marquez, V. E., Lewin, N. E., Pearce, L. V., & Blumberg, P. M. (2004). Macrocyclic diacylglycerol-bis-lactones as conformationally constrained analogues of diacylglycerol-lactones. Journal of Medicinal Chemistry, 47(16), 4000–4007. https://doi.org/10.1021/JM0497747/SUPPL_FILE/JM0497747SI20040427_040942.PDF
  • Kciuk, M., Gielecińska, A., Mujwar, S., Mojzych, M., & Kontek, R. (2022a). Cyclin-dependent kinase synthetic lethality partners in DNA damage response. International Journal of Molecular Sciences, 23(7), 1-16. https://doi.org/10.3390/ijms23073555
  • Kciuk, M., Gielecińska, A., Mujwar, S., Mojzych, M., & Kontek, R. (2022b). Cyclin-dependent kinases in DNA damage response. Biochimica et Biophysica Acta, 1877(3), 1-7. https://doi.org/10.1016/j.bbcan.2022.188716
  • Kciuk, M., Gielecińska, A., Mujwar, S., Mojzych, M., Marciniak, B., Drozda, R., & Kontek, R. (2022c). Targeting carbonic anhydrase IX and XII isoforms with small molecule inhibitors and monoclonal antibodies. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 1278–1298. https://doi.org/10.1080/14756366.2022.2052868
  • Kciuk, M., Mujwar, S., Rani, I., Munjal, K., Gielecińska, A., Kontek, R., & Shah, K. (2022d). Computational bioprospecting guggulsterone against ADP Ribose-2 phosphatase of SARS-CoV-2. Molecules, 2022, 1–15. https://doi.org/10.3390/xxxxx
  • Kciuk, M., Mujwar, S., Szymanowska, A., Marciniak, B., Bukowski, K., Mojzych, M., & Kontek, R. (2022e). Preparation of novel pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides and their experimental and computational biological studies. International Journal of Molecular Sciences, 23(11), 5892. https://doi.org/10.3390/IJMS23115892
  • Keretsu, S., Bhujbal, S. P., & Cho, S. J. (2021). Molecular modeling studies of pyrrolo[2,3-d]pyrimidin-4-amine derivatives as JAK1 inhibitors based on 3D-QSAR, molecular docking, molecular dynamics (MD) and MM-PBSA calculations. Journal of Biomolecular Structure & Dynamics, 39(3), 753–765. https://doi.org/10.1080/07391102.2020.1714483
  • Kovalishyn, V., Zyabrev, V., Kachaeva, M., Ziabrev, K., Keith, K., Harden, E., Hartline, C., James, S. H., & Brovarets, V. (2021). Design of new imidazole derivatives with anti-HCMV activity: QSAR modeling, synthesis and biological testing. Journal of Computer-Aided Molecular Design, 35(12), 1177–1187. https://doi.org/10.1007/S10822-021-00428-Z
  • Kurki, M., Poso, A., Bartos, P., & Miettinen, M. S. (2022). Structure of POPC lipid bilayers in OPLS3e force field. Journal of Chemical Information and Modeling, 62, 6462–6474. https://doi.org/10.1021/ACS.JCIM.2C00395/ASSET/IMAGES/LARGE/CI2C00395_0009.JPEG
  • Liggins, R. T., & Burt, H. M. (2001). Paclitaxel loaded poly(L-lactic acid) microspheres: properties of microspheres made with low molecular weight polymers. International Journal of Pharmaceutics, 222(1), 19–33. https://doi.org/10.1016/S0378-5173(01)00690-1
  • Miao, Q., Ma, K., Chen, D., Wu, X., & Jiang, S. (2019). Targeting tropomyosin receptor kinase for cancer therapy. European Journal of Medicinal Chemistry, 175, 129–148. https://doi.org/10.1016/J.EJMECH.2019.04.053
  • Mujwar, S. (2021a). Computational repurposing of tamibarotene against triple mutant variant of SARS-CoV-2. Computers in Biology and Medicine, 136, 104748. https://doi.org/10.1016/j.compbiomed.2021.104748
  • Mujwar, S. (2021b). Computational bioprospecting of andrographolide derivatives as potent cyclooxygenase-2 inhibitors. Biomedical and Biotechnology Research Journal, 5(4), 446–450. https://doi.org/10.4103/bbrj.bbrj_56_21
  • Mujwar, S., & Harwansh, R. K. (2022). In silico bioprospecting of taraxerol as a main protease inhibitor of SARS-CoV-2 to develop therapy against COVID-19. Structural Chemistry, 33(5), 1517–1528. https://doi.org/10.1007/s11224-022-01943-x
  • Mujwar, S., & Kumar, V. (2020). Computational drug repurposing approach to identify potential fatty acid-binding protein-4 inhibitors to develop novel antiobesity therapy. Assay and Drug Development Technologies, 18(7), 318–327. https://doi.org/10.1089/adt.2020.976
  • Mujwar, S., Shah, K., Gupta, J. K., & Gour, A. (2021). Docking based screening of curcumin derivatives: a novel approach in the inhibition of tubercular DHFR. International Journal of Computational Biology and Drug Design, 14(4), 297-314. https://doi.org/10.1504/IJCBDD.2021.10042394.
  • Mujwar, S., Sun, L., & Fidan, O. (2022). In silico evaluation of food‐derived carotenoids against SARS‐CoV‐2 drug targets: Crocin is a promising dietary supplement candidate for COVID‐19. Journal of Food Biochemistry, 46(9), 1-15. https://doi.org/10.1111/JFBC.14219
  • Mujwar, S., & Tripathi, A. (2022). Repurposing benzbromarone as antifolate to develop novel antifungal therapy for Candida albicans. Journal of Molecular Modeling, 28(7), 1–9. https://doi.org/10.1007/S00894-022-05185-W/FIGURES/6
  • Olah, M., Bologa, C., & Oprea, T. I. (2004). An automated PLS search for biologically relevant QSAR descriptors. Journal of Computer-Aided Molecular Design, 18(7–9), 437–449. https://doi.org/10.1007/S10822-004-4060-8
  • Pang, Y.-P. (1999). Novel zinc protein molecular dynamics simulations: steps toward antiangiogenesis for cancer treatment. Molecular Modeling Annual, 5(10), 196–202. https://doi.org/10.1007/S008940050119
  • Parihar, A., Sonia, Z. F., Akter, F., Ali, M. A., Hakim, F. T., & Hossain, M. S. (2022). Phytochemicals-based targeting RdRp and main protease of SARS-CoV-2 using docking and steered molecular dynamic simulation: A promising therapeutic approach for Tackling COVID-19. Computers in Biology and Medicine, 145, 105468. https://doi.org/10.1016/J.COMPBIOMED.2022.105468
  • pkCSM (n.d.). Retrieved April 16, 2022, from http://biosig.unimelb.edu.au/pkcsm/prediction
  • RCSB PDB: Homepage (n.d.). Retrieved April 15, 2022, from https://www.rcsb.org/
  • Roy, K., Mitra, I., Kar, S., Ojha, P. K., Das, R. N., & Kabir, H. (2012). Comparative studies on some metrics for external validation of QSPR models. Journal of Chemical Information and Modeling, 52(2), 396–408. https://doi.org/10.1021/ci200520g
  • Roy, K., & Pratim Roy, P. (2009). Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques. European Journal of Medicinal Chemistry, 44(7), 2913–2922. https://doi.org/10.1016/J.EJMECH.2008.12.004
  • Sato, A., Miyao, T., Jasial, S., & Funatsu, K. (2021). Comparing predictive ability of QSAR/QSPR models using 2D and 3D molecular representations. Journal of Computer-Aided Molecular Design, 35(2), 179–193. 2, https://doi.org/10.1007/S10822-020-00361-7
  • Scarabelli, G., Oloo, E. O., Maier, J. K. X., & Rodriguez-Granillo, A. (2022). Accurate prediction of protein thermodynamic stability changes upon residue mutation using free energy perturbation. Journal of Molecular Biology, 434(2), 167375. https://doi.org/10.1016/J.JMB.2021.167375
  • Schulz, R., Lindner, B., Petridis, L., & Smith, J. C. (2009). Scaling of multimillion-atom biological molecular dynamics simulation on a petascale supercomputer. Journal of Chemical Theory and Computation, 5(10), 2798–2808. https://doi.org/10.1021/CT900292R/SUPPL_FILE/CT900292R_SI_002.ZIP
  • Sein, L. T., Varnum, J. M., & Jansen, S. A. (1998). Conformational modeling of a new building block of humic acid: approaches to the lowest energy conformer. Environmental Science and Technology, 33(4), 546–552. https://doi.org/10.1021/ES9805324
  • Shah, K., & Mujwar, S. (n.d.). Delineation of a novel non-steroidal anti-inflammatory drugs derivative using molecular docking and pharmacological assessment. Indian Journal of Pharmaceutical Sciences, 84(3), 642-653. www.ijpsonline.com
  • Sharma, K. K., Singh, B., Mujwar, S., & Bisen, P. S. (2020). Molecular docking based analysis to elucidate the DNA topoisomerase IIβ as the potential target for the ganoderic acid; a natural therapeutic agent in cancer therapy. Current Computer-Aided Drug Design, 16(2), 176–189. https://doi.org/10.2174/1573409915666190820144759
  • Shinu, P., Sharma, M., Gupta, G. L., Mujwar, S., Kandeel, M., Kumar, M., Nair, A. B., Goyal, M., Singh, P., Attimarad, M., Venugopala, K. N., Nagaraja, S., Telsang, M., Aldhubiab, B. E., & Morsy, M. A. (2022). Computational design, synthesis, and pharmacological evaluation of naproxen-guaiacol chimera for gastro-sparing anti-inflammatory response by selective COX2 inhibition. Molecules, 27(20), 6905. https://doi.org/10.3390/MOLECULES27206905
  • Singh, V., Kaur, K., Kaur, S., Shri, R., Singh, T. G., & Singh, M. (2022). Trimethoxyflavones from Ocimum basilicum L. leaves improve long term memory in mice by modulating multiple pathways. Journal of Ethnopharmacology, 295, 115438. https://doi.org/10.1016/J.JEP.2022.115438
  • Sippl, W. (2002). Development of biologically active compounds by combining 3D QSAR and structure-based design methods. Journal of Computer-Aided Molecular Design, 16(11), 825–830. https://doi.org/10.1023/A:1023888813526
  • Srivastava, A., Fatima, K., Fatima, E., Singh, A., Singh, A., Shukla, A., Luqman, S., Shanker, K., Chanda, D., Khan, F., & Negi, A. S. (2020). Fluorinated benzylidene indanone exhibits antiproliferative activity through modulation of microtubule dynamics and antiangiogenic activity. European Journal of Pharmaceutical Sciences, 154, 105513. https://doi.org/10.1016/J.EJPS.2020.105513
  • SwissADME (n.d.). Retrieved April 16, 2022, from http://www.swissadme.ch/index.php
  • Testa, B., Carrupt, P. A., Guillard, P., & Tsai, R. S. (2008). Intramolecular interactions encoded in lipophilicity: their nature and significance. Lipophilicity in Drug Action and Toxicology, 4, 49–71. https://doi.org/10.1002/9783527614998.CH4
  • Tsai, K. C., Chen, Y. C., Hsiao, N. W., Wang, C. L., Lin, C. L., Lee, Y., C., Li, M., & Wang, B. (2010). A comparison of different electrostatic potentials on prediction accuracy in CoMFA and CoMSIA studies. European Journal of Medicinal Chemistry, 45(4), 1544–1551. https://doi.org/10.1016/j.ejmech.2009.12.063
  • Walters, W. P. (2012). Going further than Lipinski’s rule in drug design. Expert Opinion on Drug Discovery, 7(2), 99–107. https://doi.org/10.1517/17460441.2012.648612
  • Wang, M., Wang, Y., Kong, D., Jiang, H., Wang, J., & Cheng, M. (2018). In silico exploration of aryl sulfonamide analogs as voltage-gated sodium channel 1.7 inhibitors by using 3D-QSAR, molecular docking study, and molecular dynamics simulations. Computational Biology and Chemistry, 77, 214–225. https://doi.org/10.1016/J.COMPBIOLCHEM.2018.10.009
  • Wu, T., Zhang, C., Lv, R., Qin, Q., Liu, N., Yin, W., Wang, R., Sun, Y., Wang, X., Sun, Y., Zhao, D., & Cheng, M. (2021). Design, synthesis, biological evaluation and pharmacophore model analysis of novel tetrahydropyrrolo[3,4-c]pyrazol derivatives as potential TRKs inhibitors. European Journal of Medicinal Chemistry, 223, 113627. https://doi.org/10.1016/J.EJMECH.2021.113627
  • Yalkowsky, S. H., & Valvani, S. C. (1980). Solubility and partitioning I: Solubility of nonelectrolytes in water. Journal of Pharmaceutical Sciences, 69(8), 912–922. https://doi.org/10.1002/jps.2600690814
  • Zhang, M. Q., & Wilkinson, B. (2007). Drug discovery beyond the “rule-of-five”. Current Opinion in Biotechnology, 18(6), 478–488. https://doi.org/10.1016/j.copbio.2007.10.005
  • Zhong, L., Li, Y., Xiong, L., Wang, W., Wu, M., Yuan, T., Yang, W., Tian, C., Miao, Z., Wang, T., & Yang, S. (2021). Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduction and Targeted Therapy, 6(1), 1–48. https://doi.org/10.1038/s41392-021-00572-w
  • Zhou, R., & Zeng, X. C. (2012). Polymorphic phases of sp 3-hybridized carbon under cold compression. Journal of the American Chemical Society, 134(17), 7530–7538. https://doi.org/10.1021/JA301582D/SUPPL_FILE/JA301582D_SI_001.PDF

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.