385
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, characterization, molecular dynamic simulation, and biological assessment of cinnamates linked to imidazole/benzimidazole as a CYP51 inhibitor

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 11518-11534 | Received 25 Oct 2022, Accepted 26 Dec 2022, Published online: 24 Jan 2023

References

  • Abdelgawad, M. A., Oh, J., M., Parambi, D. G. T., Kumar, S., Musa, A., Ghoneim, M. M., Nayl, A. A., El-Ghorab, A. H., Ahmad, I., Patel, H., Kim, H., & Mathew, B. (2022). Development of bromo- and fluoro-based α, β-unsaturated ketones as highly potent MAO-B inhibitors for the treatment of Parkinson’s disease. Journal of Molecular Structure, 1266, 133545. https://doi.org/10.1016/J.MOLSTRUC.2022.133545
  • Ahmad, I., Akand, S. R., Shaikh, M., Pawara, R., Manjula, S. N., & Patel, H. (2022). Synthesis, molecular modelling study of the methaqualone analogues as anti-convulsant agent with improved cognition activity and minimized neurotoxicity. Journal of Molecular Structure, 1251, 131972. https://doi.org/10.1016/J.MOLSTRUC.2021.131972
  • Ahmad, I., Pawara, R. H., Girase, R. T., Pathan, A. Y., Jagatap, V. R., Desai, N., Ayipo, Y. O., Surana, S. J., & Patel, H. (2022). Synthesis, molecular modeling study, and quantum-chemical-based investigations of isoindoline-1,3-diones as antimycobacterial agents. ACS Omega, 7(25), 21820–21844. https://doi.org/10.1021/ACSOMEGA.2C01981
  • Ahmad, I., Pawara, R., & Patel, H. (2022). In silico toxicity investigation of Methaqualone’s conjunctival, retinal, and gastrointestinal hemorrhage by molecular modelling approach. Molecular Simulation, 48(18), 1639-1649. https://doi.org/10.1080/08927022.2022.2113412
  • Aljuhani, A., Ahmed, H., E., A., Ihmaid, S. K., Omar, A. M., Althagfan, S. S., Alahmadi, Y. M., Ahmad, I., Patel, H., Ahmed, S., Almikhlafi, M. A., El-Agrody, A. M., Zayed, M. F., Safaa, G., Turkistani, A., Abulkhair, S. H., Almaghrabi, M., Salama, S. A., Al-Karmalawy, A. A., Abulkhair, H. S., Arabia, S. … (2022). In vitro and computational investigations of novel synthetic carboxamide-linked pyridopyrrolopyrimidines with potent activity as SARS-CoV-2-M Pro inhibitors. RSC Advances, 12(41), 26895–26907. https://doi.org/10.1039/D2RA04015H
  • Ansari, K. F., & Lal, C. (2009). Synthesis and evaluation of some new benzimidazole derivatives as potential antimicrobial agents. European Journal of Medicinal Chemistry, 44(5), 2294–2299. https://doi.org/10.1016/J.EJMECH.2008.01.022
  • Ayipo, Y. O., Yahaya, S. N., Babamale, H. F., Ahmad, I., Patel, H., & Mordi, M. N. (2021). ß-Carboline alkaloids induce structural plasticity and inhibition of SARS-CoV-2 nsp3 macrodomain more potently than remdesivir metabolite GS-441524: Computational approach. Turkish Journal of Biology, 45(7), 503–517. https://doi.org/10.3906/biy-2106-64
  • Becke, A. D., & Johnson, E. R. (2005). A density-functional model of the dispersion interaction. The Journal of Chemical Physics, 123(15), 154101. https://doi.org/10.1063/1.2065267
  • Bharadwaj, K. K., Ahmad, I., Pati, S., Ghosh, A., Sarkar, T., Rabha, B., Patel, H., Baishya, D., Edinur, H. A., Abdul Kari, Z., Ahmad Mohd Zain, M. R., & Wan Rosli, W. I. (2022). Potent bioactive compounds from seaweed waste to combat cancer through bioinformatics investigation. Frontiers in Nutrition, 9, 889276. https://doi.org/10.3389/FNUT.2022.889276
  • Chaudhari, B., Patel, H., Thakar, S., Ahmad, I., & Bansode, D. (2022). Optimizing the Sunitinib for cardio-toxicity and thyro-toxicity by scaffold hopping approach. In silico Pharmacology, 10(1), 10–14. https://doi.org/10.1007/S40203-022-00125-1
  • D. E. Shaw Research, Schrödinger Release. (2020-3). Desmond molecular dynamics system. Maestro-Desmond Interoperability Tools.
  • De, P., Baltas, M., & Bedos-Belval, F. (2011). Cinnamic acid derivatives as anticancer agents-a review. Current Medicinal Chemistry, 18(11), 1672–1703. https://doi.org/10.2174/092986711795471347
  • Desai, N. C., Joshi, S. B., Khasiya, A. G., Jadeja, D. J., Mehta, H. K., Pandya, M., Ahmad, I., & Patel, H. (2022). Pyrazolo-imidazolidinones: Synthesis, antimicrobial assessment and molecular modelling studies by molecular mechanic and quantum mechanic approach. Journal of Molecular Structure, 1270, 134000. https://doi.org/10.1016/J.MOLSTRUC.2022.134000
  • Farhan, M. M., Guma, M. A., Rabeea, M. A., Ahmad, I., & Patel, H. (2022). Synthesizes, characterization, molecular docking and in vitro bioactivity study of new compounds containing triple beta lactam rings. Journal of Molecular Structure, 1269, 133781. https://doi.org/10.1016/J.MOLSTRUC.2022.133781
  • Frisch, A. (1996). Gaussian 09W Reference.
  • Ghosh, S., Das, S., Ahmad, I., & Patel, H. (2021). In silico validation of anti-viral drugs obtained from marine sources as a potential target against SARS-CoV-2 Mpro. Journal of the Indian Chemical Society, 98(12), 100272. https://doi.org/10.1016/J.JICS.2021.100272
  • Grassmann, S., Sadek, B., Ligneau, X., Elz, S., Ganellin, C. R., Arrang, J.-M., Schwartz, J.-C., Stark, H., & Schunack, W. (2002). Progress in the proxifan class: Heterocyclic congeners as novel potent and selective histamine H3-receptor antagonists. European journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences, 15(4), 367–378. https://doi.org/10.1016/S0928-0987(02)00024-6
  • Gurer-Orhan, H., Orhan, H., Suzen, S., Püsküllü, M. O., & Buyukbingol, E. (2008). Synthesis and evaluation of in vitro antioxidant capacities of some benzimidazole derivatives. Journal of enzyme inhibition and medicinal chemistry, 21, 241–247. https://doi.org/10.1080/14756360600586031
  • Guzman, J. D. (2014). Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules, 19, 19292–19349. https://doi.org/10.3390/MOLECULES191219292
  • Horn, F., Heinekamp, T., Kniemeyer, O., Pollmächer, J., Valiante, V., & Brakhage, A. A. (2012). Systems biology of fungal infection. Frontiers in Microbiology, 3, 108. https://doi.org/10.3389/FMICB.2012.00108
  • Korošec, B., Sova, M., Turk, S., Kraševec, N., Novak, M., Lah, L., Stojan, J., Podobnik, B., Berne, S., Zupanec, N., Bunc, M., Gobec, S., & Komel, R. (2014). Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53). Journal of Applied Microbiology, 116(4), 955–966. https://doi.org/10.1111/JAM.12417
  • Labanauskas, L. K., Brukštus, A. B., Gaidelis, P. G., Buchinskaite, V. A., Udrenaite, É. B., & Daukšas, V. K. (2004). Synthesis and anti-inflammatory activity of some new 1-acyl derivatives of 2-methylthio-5,6-diethoxybenzimidazole. Pharmaceutical Chemistry Journal, 34, 353–355. https://doi.org/10.1023/A:1005213306544
  • Mazzone, G., Russo, N., & Toscano, M. (2016). Antioxidant properties comparative study of natural hydroxycinnamic acids and structurally modified derivatives: Computational insights. Computational and Theoretical Chemistry, 1077, 39–47. https://doi.org/10.1016/J.COMPTC.2015.10.011
  • Morcoss, M. M., Abdelhafez, E., Ibrahem, R. A., Abdel-Rahman, H. M., Abdel-Aziz, M., & Abou El-Ella, D. A. (2020). Design, synthesis, mechanistic studies and in silico ADME predictions of benzimidazole derivatives as novel antifungal agents. Bioorganic Chemistry, 101, 103956. https://doi.org/10.1016/J.BIOORG.2020.103956
  • Morris, G. M., Huey, R., & Olson, A. J. (2008). Using AutoDock for ligand-receptor docking. Curr Protoc Bioinformatics, 24, 1–8. https://doi.org/10.1002/0471250953.BI0814S24
  • Osmaniye, D., Karaca, Ş., Kurban, B., Baysal, M., Ahmad, I., Patel, H., Özkay, Y., & Asım Kaplancıklı, Z. (2022). Design, synthesis, molecular docking and molecular dynamics studies of novel triazolothiadiazine derivatives containing furan or thiophene rings as anticancer agents. Bioorganic Chemistry, 122, 105709. https://doi.org/10.1016/J.BIOORG.2022.105709
  • Özkay, Y., Işikdaǧ, I., Incesu, Z., & Akalin, G. (2010). Synthesis of 2-substituted-N-[4-(1-methyl-4,5-diphenyl-1H-imidazole-2-yl)phenyl] acetamide derivatives and evaluation of their anticancer activity. European Journal of Medicinal Chemistry, 45, 3320–3328. https://doi.org/10.1016/J.EJMECH.2010.04.015
  • Pandey, R., Dubey, I., Ahmad, I., Mahapatra, D. K., Patel, H., & Kumar, P. (2022). In silico study of some dexamethasone analogs and derivatives against SARs-CoV-2 target: A cost-effective alternative to remdesivir for various COVID phases. Current Chinese Science, 2(4), 294–309. https://doi.org/10.2174/2210298102666220404102217
  • Patel, K. B., & Kumari, P. (2022a). Anticancer activity and docking study of flavone derivatives as peroxisome proliferator-activated receptorγ inhibitors. Structural Chemistry, 4, 1–17. https://doi.org/10.1007/S11224-022-01926-Y
  • Patel, K. B., & Kumari, P. (2022b). A review: Structure-activity relationship and antibacterial activities of Quinoline based hybrids. Journal of Molecular Structure, 1268, 133634. https://doi.org/10.1016/J.MOLSTRUC.2022.133634
  • Patel, R. V., Patel, P. K., Kumari, P., Rajani, D. P., & Chikhalia, K. H. (2012). Synthesis of benzimidazolyl-1,3,4-oxadiazol-2ylthio-N-phenyl (benzothiazolyl) acetamides as antibacterial, antifungal and antituberculosis agents. European Journal of Medicinal Chemistry, 53, 41–51. https://doi.org/10.1016/J.EJMECH.2012.03.033
  • Paul, R. K., Ahmad, I., Patel, H., Kumar, V., & Raza, K. (2023). Phytochemicals from Amberboa ramosa as potential DPP-IV inhibitors for the management of Type-II diabetes mellitus: Inferences from in-silico investigations. Journal of Molecular Structure, 1271, 134045. https://doi.org/10.1016/J.MOLSTRUC.2022.134045
  • Perfect, J. R. (2017). The antifungal pipeline: A reality check. Nature Reviews. Drug Discovery, 16(9), 603–616. https://doi.org/10.1038/NRD.2017.46
  • Perković, I., Raić-Malić, S., Fontinha, D., Prudêncio, M., Pessanha de Carvalho, L., Held, J., Tandarić, T., Vianello, R., Zorc, B., & Rajić, Z. (2020). Harmicines − harmine and cinnamic acid hybrids as novel antiplasmodial hits. European Journal of Medicinal Chemistry, 187, 111927. https://doi.org/10.1016/J.EJMECH.2019.111927
  • Podobnik, B., Stojan, J., Lah, L., Kraševec, N., Seliškar, M., Rižner, T. L., Rozman, D., & Komel, R. (2008). CYP53A15 of Cochliobolus lunatus, a target for natural antifungal compounds. Journal of Medicinal Chemistry, 51(12), 3480–3486. https://doi.org/10.1021/JM800030E
  • Radwan, H. A., Ahmad, I., Othman, I. M. M., Gad-Elkareem, M., A. M., Patel, H., Aouadi, K., Snoussi, M., & Kadri, A. (2022). Design, synthesis, in vitro anticancer and antimicrobial evaluation, SAR analysis, molecular docking and dynamic simulation of new pyrazoles, triazoles and pyridazines based isoxazole. Journal of Molecular Structure, 1264, 133312. https://doi.org/10.1016/J.MOLSTRUC.2022.133312
  • Ramachandran, R., Rani, M., Senthan, S., Jeong, Y. T., & Kabilan, S. (2011). Synthesis, spectral, crystal structure and in vitro antimicrobial evaluation of imidazole/benzotriazole substituted piperidin-4-one derivatives. European Journal of Medicinal Chemistry, 46(5), 1926–1934. https://doi.org/10.1016/J.EJMECH.2011.02.036
  • Ramírez-Villalva, A., González-Calderón, D., González-Romero, C., Morales-Rodríguez, M., Jauregui-Rodríguez, B., Cuevas-Yáñez, E., & Fuentes-Benítes, A. (2015). A facile synthesis of novel miconazole analogues and the evaluation of their antifungal activity. European Journal of Medicinal Chemistry, 97, 275–279. https://doi.org/10.1016/J.EJMECH.2015.04.047
  • Rani, N., Sharma, A., Kumar Gupta, G., & Singh, R. (2013). Imidazoles as potential antifungal agents: A review. Mini Reviews in Medicinal Chemistry, 13(11), 1626–1655. https://doi.org/10.2174/13895575113139990069
  • Röhrig, U. F., Majjigapu, S. R., Chambon, M., Bron, S., Pilotte, L., Colau, D., van den Eynde, B. J., Turcatti, G., Vogel, P., Zoete, V., & Michielin, O. (2014). Detailed analysis and follow-up studies of a high-throughput screening for indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. European journal of Medicinal Chemistry, 84, 284–301. https://doi.org/10.1016/J.EJMECH.2014.06.078
  • Rossello, A., Bertini, S., Lapucci, A., Macchia, M., Martinelli, A., Rapposelli, S., Herreros, E., & Macchia, B. (2002). Synthesis, antifungal activity, and molecular modeling studies of new inverted oxime ethers of oxiconazole. Journal of Medicinal Chemistry, 45(22), 4903–4912. https://doi.org/10.1021/JM020980T
  • Ruan, B. F., Ge, W. W., Cheng, H. J., Xu, H. J., Li, Q. S., & Liu, X. H. (2017). Resveratrol-based cinnamic ester hybrids: Synthesis, characterization, and anti-inflammatory activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 1282–1290. https://doi.org/10.1080/14756366.2017.1381090
  • Sevak, R., Paul, A., Goswami, S., & Santani, D. (2002). Gastroprotective effect of β3 adrenoceptor agonists ZD 7114 and CGP 12177A in rats. Pharmacological Research, 46, 351–356. https://doi.org/10.1016/S1043661802001500
  • Shivanika, C., Deepak Kumar, S., Ragunathan, V., Tiwari, P., Sumitha, A., & Brindha Devi, P. (2022). Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure and Dynamics, 40, 585–611. https://doi.org/10.1080/07391102.2020.1815584
  • Snoussi, M., Ahmad, I., Patel, H., Noumi, E., Zrieq, R., Saeed, M., Sulaiman, S., Khalifa, N. E., Chabchoub, F., Feo, V. D., Gad-Elkareem, M., A., M., Aouadi, K., & Kadri, A. (2022). Lapachol and (α/β)-lapachone as inhibitors of SARS-CoV-2 Main Protease (Mpro) and hACE-2: ADME properties, docking and dynamic simulation approaches. Pharmacognosy Magazine, 18(79), 773. https://doi.org/10.4103/PM.PM_251_22
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic acids Research, 46(W1), W363–W367. https://doi.org/10.1093/NAR/GKY473
  • Tople, M. S., Patel, N. B., Patel, P. P., Purohit, A. C., Ahmad, I., & Patel, H. (2023). An in silico-in vitro antimalarial and antimicrobial investigation of newer 7-chloroquinoline based Schiff-bases. Journal of Molecular Structure, 1271, 134016. https://doi.org/10.1016/J.MOLSTRUC.2022.134016
  • Wang, Z., Deng, X., Xiong, S., Xiong, R., Liu, J., Zou, L., Lei, X., Cao, X., Xie, Z., Chen, Y., Liu, Y., Zheng, X., & Tang, G. (2018). Design, synthesis and biological evaluation of chrysin benzimidazole derivatives as potential anticancer agents. Natural Product Research, 32(24), 2900–2909. https://doi.org/10.1080/14786419.2017.1389940
  • Wolinskv, K., Hinton, J. F., & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112, 8251–8260.
  • Xu, X. T., Deng, X. Y., Chen, J., Liang, Q. M., Zhang, K., Li, D. L., Wu, P. P., Zheng, X., Zhou, R. P., Jiang, Z. Y., Ma, A. J., Chen, W. H., & Wang, S. H. (2020). Synthesis and biological evaluation of coumarin derivatives as α-glucosidase inhibitors. European Journal of Medicinal Chemistry, 189, 112013. https://doi.org/10.1016/J.EJMECH.2019.112013
  • Zala, A. R., Rajani, D. P., & Kumari, P. (2022). Design, synthesis, molecular docking and antimicrobial and antimycobacterial activities of novel hybrid of coumarin-cinnamic acids. Chemical Data Collections, 39, 100862. https://doi.org/10.1016/J.CDC.2022.100862
  • Zala, A. R., Rajani, D. P., & Kumari, P. (2022). Synthesis, molecular docking, ADME study, and antimicrobial potency of piperazine based cinnamic acid bearing coumarin moieties as a DNA gyrase inhibitor. Journal of Biochemical and Molecular Toxicology, 1, e23231. https://doi.org/10.1002/jbt.23231
  • Zhang, J., Li, L., Lv, Q., Yan, L., Wang, Y., & Jiang, Y. (2019). The fungal CYP51s: Their functions, structures, related drug resistance, and inhibitors. Frontiers in Microbiology, 10, 691. https://doi.org/10.3389/FMICB.2019.00691/BIBTEX
  • Zieliński, R., & Szymusiak, H. (2003). Application of DFT B3LYP/GIAO and B3LYP/CSGT methods for interpretation of NMR spectra of flavonoids. Polish Journal of Food and Nutrition Sciences, 53, 157–162.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.