314
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of thiazole-based-thiourea analogs: as anticancer, antiglycation and antioxidant agents, structure activity relationship analysis and docking study

ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, & show all
Pages 12077-12092 | Received 05 Oct 2022, Accepted 27 Dec 2022, Published online: 25 Jan 2023

References

  • Alam, M. M., Ahmad, I., & Naseem, I. (2015). Inhibitory effect of quercetin in the formation of advance glycation end products of human serum albumin: An in vitro and molecular interaction study. International Journal of Biological Macromolecules, 79, 336–343. https://doi.org/10.1016/j.ijbiomac.2015.05.004
  • Ali, I., Rafique, R., Khan, K. M., Chigurupati, S., Ji, X., Wadood, A., Rehman, A. U., Salar, U., Iqbal, M. S., Taha, M., Perveen, S., & Ali, B. (2020). Potent α-amylase inhibitors and radical (DPPH and ABTS)scavengers based on benzofuran-2-yl (phenyl) methanone derivatives: Syntheses, in vitro, kinetics, and in silico studies. Bioorganic Chemistry, 104, 104238. https://doi.org/10.1016/j.bioorg.2020.104238
  • Argyropoulou, I., Geronikaki, A., Vicini, P., & Zani, F. (2009). Synthesis and biological evaluation of sulfonamide thiazole and benzothiazole derivatives as antimicrobial agents. Arkivoc, 2009(6), 89–102. https://doi.org/10.3998/ark.5550190.0010.611
  • Awasthi, S., & Saraswathi, N. (2016). Sinigrin, a major glucosinolate from cruciferous vegetables restrains non-enzymatic glycation of albumin. International Journal of Biological Macromolecules, 83, 410–415. https://doi.org/10.1016/j.ijbiomac.2015.11.019
  • Badorc, A., Bordes, M.-F., de Cointet, P., Savi, P., Bernat, A., Lalé, A., Petitou, M., Maffrand, J.-P., & Herbert, J.-M. (1997). New orally active non-peptide fibrinogen receptor (GpIIb-IIIa) antagonists: Identification of ethyl 3-[N-[4-[4-[amino [(ethoxycarbonyl) imino] methyl] phenyl]-1, 3-thiazol-2-yl]-N-[1-[(ethoxycarbonyl) methyl] piperid-4-yl] amino] propionate (SR 121787) as a potent and long-acting antithrombotic agent. Journal of Medicinal Chemistry, 40(21), 3393–3401. https://doi.org/10.1021/jm970240y
  • Basta, J., El-Bassoussi, A., Salem, A., Nessim, M., Ahmed, M., & Attia, S. (2017). Preparation and evaluation of some benzimidazole derivatives as antioxidants for local base oil. Egyptian Journal of Petroleum, 26(4), 933–941. https://doi.org/10.1016/j.ejpe.2016.10.001
  • Bell, F. W., Cantrell, A. S., Högberg, M., Jaskunas, S. R., Johansson, N. G., Jordan, C. L., Kinnick, M. D., Lind, P., Morin, J. M., & Noréen, R., Jr. (1995). Phenethylthiazolethiourea (PETT) compounds, a new class of HIV-1 reverse transcriptase inhibitors. 1. Synthesis and basic structure-activity relationship studies of PETT analogs. Journal of Medicinal Chemistry, 38(25), 4929–4936. https://doi.org/10.1021/jm00025a010
  • Bielenica, A., Beegum, S., Mary, Y. S., Mary, Y. S., Thomas, R., Armaković, S., Armaković, S. J., Madeddu, S., Struga, M., & Van Alsenoy, C. (2020). Experimental and computational analysis of 1-(4-chloro-3-nitrophenyl)-3-(3, 4-dichlorophenyl) thiourea. Journal of Molecular Structure, 1205, 127587. https://doi.org/10.1016/j.molstruc.2019.127587
  • Carter, J. S., Kramer, S., Talley, J. J., Penning, T., Collins, P., Graneto, M. J., Seibert, K., Koboldt, C. M., Masferrer, J., & Zweifel, B. (1999). Synthesis and activity of sulfonamide-substituted 4, 5-diaryl thiazoles as selective cyclooxygenase-2 inhibitors. Bioorganic & Medicinal Chemistry Letters, 9(8), 1171–1174. https://doi.org/10.1016/S0960-894X(99)00157-2
  • Costa, M. V., de Sequeira Aguiar, L. C., Malta, L. F. B., Viana, G. M., & Costa, B. B. (2016). Simple and efficient methodology to prepare guanidines from 1, 3-disubstituted thioureas. Tetrahedron Letters, 57(14), 1585–1588. https://doi.org/10.1016/j.tetlet.2016.02.107
  • Djukic, M., Fesatidou, M., Xenikakis, I., Geronikaki, A., Angelova, V. T., Savic, V., Pasic, M., Krilovic, B., Djukic, D., Gobeljic, B., Pavlica, M., Djuric, A., Stanojevic, I., Vojvodic, D., & Saso, L. (2018). In vitro antioxidant activity of thiazolidinone derivatives of 1, 3-thiazole and 1, 3, 4-thiadiazole. Chemico-Biological Interactions, 286, 119–131. https://doi.org/10.1016/j.cbi.2018.03.013
  • Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82(1), 47–95. https://doi.org/10.1152/physrev.00018.2001
  • Đukić, M., Ninković, M., & Jovanović, M. (2008). Oxidative stress: Clinical diagnostic significance. Journal of Medical Biochemistry, 27(4), 409–425. https://doi.org/10.2478/v10011-008-0024-1
  • El-Naggar, A. M., El-Hashash, M. A., & Elkaeed, E. B. (2021). Eco-friendly sequential one-pot synthesis, molecular docking, and anticancer evaluation of arylidene-hydrazinyl-thiazole derivatives as CDK2 inhibitors. Bioorganic Chemistry, 108, 104615. https://doi.org/10.1016/j.bioorg.2020.104615
  • Ergenç, N., Çapan, G., Günay, N. S., Özkirimli, S., Güngör, M., Özbey, S., & Kendi, E. (1999). Synthesis and hypnotic activity of new 4‐thiazolidinone and 2‐thioxo‐4, 5‐imidazolidinedione derivatives. Archiv der Pharmazie, 332(10), 343–347. https://doi.org/10.1002/(SICI)1521-4184(199910)332:10<343::AID-ARDP343>3.0.CO;2-0
  • Gomha, S. M., & Khalil, K. D. (2012). A convenient ultrasound-promoted synthesis of some new thiazole derivatives bearing a coumarin nucleus and their cytotoxic activity. Molecules (Basel, Switzerland), 17(8), 9335–9347. https://doi.org/10.3390/molecules17089335
  • Grozav, A., Porumb, I.-D., Găină, L. I., Filip, L., & Hanganu, D. (2017). Cytotoxicity and antioxidant potential of novel 2-(2-((1 H-indol-5yl) methylene)-hydrazinyl)-thiazole derivatives. Molecules, 22(2), 260. https://doi.org/10.3390/molecules22020260
  • Grzegorczyk-Karolak, I., Gołąb, K., Gburek, J., Wysokińska, H., & Matkowski, A. (2016). Inhibition of advanced glycation end-product formation and antioxidant activity by extracts and polyphenols from Scutellaria alpina L. and S. altissima L. Molecules, 21(6), 739. https://doi.org/10.3390/molecules21060739
  • Gull, Y., Rasool, N., Noreen, M., Nasim, F.-U.-H., Yaqoob, A., Kousar, S., Rasheed, U., Bukhari, I. H., Zubair, M., & Islam, M. S. (2013). Efficient synthesis of 2-amino-6-arylbenzothiazoles via Pd (0) Suzuki cross coupling reactions: Potent urease enzyme inhibition and nitric oxide scavenging activities of the products. Molecules (Basel, Switzerland), 18(8), 8845–8857. https://doi.org/10.3390/molecules18088845
  • Hargrave, K. D., Hess, F. K., & Oliver, J. T. (1983). N-(4-Substituted-thiazolyl) oxamic acid derivatives, new series of potent, orally active antiallergy agents. Journal of Medicinal Chemistry, 26(8), 1158–1163. https://doi.org/10.1021/jm00362a014
  • Hou, Y., Xie, Z., Cui, H., Lu, Y., Zheng, T., Sang, S., & Lv, L. (2018). Trapping of glyoxal by propyl, octyl and dodecyl gallates and their mono-glyoxal adducts. Food Chemistry, 269, 396–403. https://doi.org/10.1016/j.foodchem.2018.07.030
  • Hu, W-x., Zhou, W., Xia, C-n., & Wen, X. (2006). Synthesis and anticancer activity of thiosemicarbazones. Bioorganic & Medicinal Chemistry Letters, 16(8), 2213–2218. https://doi.org/10.1016/j.bmcl.2006.01.048
  • Huang, S., & Connolly, P. J. (2004). Synthesis of 2-N-alkyl (aryl) amino-7-nitrobenzothiazoles. Tetrahedron Letters, 45(51), 9373–9375. https://doi.org/10.1016/j.tetlet.2004.10.117
  • Jaen, J. C., Wise, L. D., Caprathe, B. W., Tecle, H., Bergmeier, S., Humblet, C. C., Heffner, T. G., Meltzer, L. T., & Pugsley, T. A. (1990). 4-(1, 2, 5, 6-Tetrahydro-1-alkyl-3-pyridinyl)-2-thiazolamines: A novel class of compounds with central dopamine agonist properties. Journal of Medicinal Chemistry, 33(1), 311–317. https://doi.org/10.1021/jm00163a051
  • Kachroo, M., Rao, G., Rajasekaran, S., Pai, S., & Hemalatha, Y. (2011). Synthesis, antibacterial and antioxidant activity of N-[(4E)-arylidene-5-oxo-2-phenyl-4, 5-dihydro-1H-imidazol-1-yl]-2-(2-methyl-1, 3-thiazol-4-yl) acetamide. Der Pharma Chemica, 3(3), 241–245.
  • Kashyap, S. J., Sharma, P. K., Garg, V. K., Dudhe, R., & Kumar, N. (2011). Review on synthesis and various biological potential of thiazolopyrimidine derivatives. Journal of Advanced Scientific Research, 2(03), 18–24.
  • Kasote, D. M., Katyare, S. S., Hegde, M. V., & Bae, H. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11(8), 982–991. https://doi.org/10.7150/ijbs.12096
  • Kavitha, P., Mohan, S., & Saravanan, J. (2011). Synthesis of some novel 4-(4-chlorophenyl) 2-aryl substituted metheniminothiazoles as possible antioxidant agents. Journal of Medicinal Chemistry, 1(2), 1–6.
  • Kemson, J. (2011). Hantzsch thiazole synthesis. Name reactions in heterocyclic chemistry II (pp. 299–308, J.-J. Li, Ed.). J. Wiley & Sons, Inc.
  • Kenny, P. A., Lee, G. Y., & Bissell, M. J. (2007). Targeting the tumor microenvironment. Frontiers in Bioscience: A Journal and Virtual Library, 12, 3468–3474. https://doi.org/10.2741/2327
  • Khan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S., & Choudhary, M. I. (2009). Synthesis of bis-Schiff bases of isatins and their antiglycation activity. Bioorganic & Medicinal Chemistry, 17(22), 7795–7801. https://doi.org/10.1016/j.bmc.2009.09.028
  • Khan, K. M., Shah, Z., Uddin Ahmad, V., Khan, M., Taha, M., Rahim, F., Jahan, H., Perveen, S., & Iqbal Choudhary, M. (2011). Synthesis of 2, 4, 6-trichlorophenyl hydrazones and their inhibitory potential against glycation of protein. Medicinal chemistry (Shariqah (United Arab Emirates), 7(6), 572–580. https://doi.org/10.2174/157340611797928415
  • Krzywik, J., Maj, E., Nasulewicz-Goldeman, A., Mozga, W., Wietrzyk, J., & Huczyński, A. (2021). Synthesis and antiproliferative screening of novel doubly modified colchicines containing urea, thiourea and guanidine moieties. Bioorganic & Medicinal Chemistry Letters, 47, 128197. https://doi.org/10.1016/j.bmcl.2021.128197
  • Kumar, V., Sharma, A., & Sharma, P. C. (2011). Synthesis of some novel 2, 5-disubstituted thiazolidinones from a long chain fatty acid as possible anti-inflammatory, analgesic and hydrogen peroxide scavenging agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 26(2), 198–203. https://doi.org/10.3109/14756366.2010.489897
  • Lafzi, F., Kilic, D., Yildiz, M., & Saracoglu, N. (2021). Design, synthesis, antimicrobial evaluation, and molecular docking of novel chiral urea/thiourea derivatives bearing indole, benzimidazole, and benzothiazole scaffolds. Journal of Molecular Structure, 1241, 130566. https://doi.org/10.1016/j.molstruc.2021.130566
  • Li, Z.-H., Liu, X.-Q., Zhao, T.-Q., Geng, P.-F., Guo, W.-G., Yu, B., & Liu, H.-M. (2017). Design, synthesis and preliminary biological evaluation of new [1, 2, 3] triazolo [4, 5-d] pyrimidine/thiourea hybrids as antiproliferative agents. European Journal of Medicinal Chemistry, 139, 741–749. https://doi.org/10.1016/j.ejmech.2017.08.042
  • Liu, M-y., Xiao, L., Dong, Y-q., Liu, Y., Cai, L., Xiong, W-x., Yao, Y-l., Yin, M., & Liu, Q-h (2014). Characterization of the anticancer effects of S115, a novel heteroaromatic thiosemicarbazone compound, in vitro and in vivo. Acta Pharmacologica Sinica, 35(10), 1302–1310. https://doi.org/10.1038/aps.2014.71
  • Lyons, J., Vandepopuliere, J., & Hall, R. (1988). Thiourea as a house fly larvicide in caged laying hen manure: Topical and feed-through administration. Poultry Science, 67(3), 407–412. https://doi.org/10.3382/ps.0670407
  • Murphy, M. P., Holmgren, A., Larsson, N.-G., Halliwell, B., Chang, C. J., Kalyanaraman, B., Rhee, S. G., Thornalley, P. J., Partridge, L., Gems, D., Nyström, T., Belousov, V., Schumacker, P. T., & Winterbourn, C. C. (2011). Unraveling the biological roles of reactive oxygen species. Cell Metabolism, 13(4), 361–366. https://doi.org/10.1016/j.cmet.2011.03.010
  • Ouyang, L., Shi, Z., Zhao, S., Wang, F. T., Zhou, T. T., Liu, B., & Bao, J. K. (2012). Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. Cell Proliferation, 45(6), 487–498. https://doi.org/10.1111/j.1365-2184.2012.00845.x
  • Patt, W. C., Hamilton, H. W., Taylor, M. D., Ryan, M. J., Taylor, D. G., Connolly, C. J., Doherty, A. M., Klutchko, S. R., Sircar, I., & Steinbaugh, B. A. (1992). Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors. Journal of Medicinal Chemistry, 35(14), 2562–2572. https://doi.org/10.1021/jm00092a006
  • Rudolph, J., Theis, H., Hanke, R., Endermann, R., Johannsen, L., & Geschke, F.-U. (2001). seco-Cyclothialidines: New concise synthesis, inhibitory activity toward bacterial and human DNA topoisomerases, and antibacterial properties. Journal of Medicinal Chemistry, 44(4), 619–626. https://doi.org/10.1021/jm0010623
  • Sajid-Ur-Rehman, Saeed, A., Saddique, G., Ali Channar, P., Ali Larik, F., Abbas, Q., Hassan, M., Raza, H., Fattah, T. A., & Seo, S.-Y. (2018). Synthesis of sulfadiazinyl acyl/aryl thiourea derivatives as calf intestinal alkaline phosphatase inhibitors, pharmacokinetic properties, lead optimization, Lineweaver-Burk plot evaluation and binding analysis. Bioorganic & Medicinal Chemistry, 26(12), 3707–3715. https://doi.org/10.1016/j.bmc.2018.06.002
  • Šarkanj, B., Molnar, M., Čačić, M., & Gille, L. (2013). 4-Methyl-7-hydroxycoumarin antifungal and antioxidant activity enhancement by substitution with thiosemicarbazide and thiazolidinone moieties. Food chemistry, 139(1–4), 488–495. https://doi.org/10.1016/j.foodchem.2013.01.027
  • Shantharam, C. S., Vardhan, D. S., Suhas, R., Sridhara, M. B., & Gowda, D. C. (2013). Inhibition of protein glycation by urea and thiourea derivatives of glycine/proline conjugated benzisoxazole analogue–Synthesis and structure–activity studies. European Journal of Medicinal Chemistry, 60, 325–332. https://doi.org/10.1016/j.ejmech.2012.12.029
  • Sharma, A., Kumar, V., Jain, S., & Sharma, P. C. (2011). Thiazolidin-4-one and hydrazone derivatives of capric acid as possible anti-inflammatory, analgesic and hydrogen peroxide-scavenging agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 26(4), 546–552. https://doi.org/10.3109/14756366.2010.535796
  • Sharma, R., Xavier, F., Vasu, K., Chaturvedi, S., & Pancholi, S. (2009). Design, synthesis, and biological activity of thiazole derivatives as novel influenza neuraminidase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 24(3), 890–897. https://doi.org/10.1080/14756360802519558
  • Sheng, Z., Dai, H., Pan, S., Ai, B., Zheng, L., Zheng, X., Prinyawiwatkul, W., & Xu, Z. (2017). Phytosterols in banana (Musa spp.) flower inhibit α‐glucosidase and α‐amylase hydrolysations and glycation reaction. International Journal of Food Science & Technology, 52(1), 171–179. https://doi.org/10.1111/ijfs.13263
  • Siddiqui, N., Arya, S. K., Ahsan, W., & Azad, B. (2011). Diverse biological activities of Thiazoles: A Retrospect. International Journal of Drug Development and Research, 3(4).
  • Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. CA: A Cancer Journal for Clinicians, 65(1), 5–29. https://doi.org/10.3322/caac.21254
  • Singh, A. K., Mishra, G., & Jyoti, K. (2011). Review on biological activities of 1, 3, 4-thiadiazole derivatives. Journal of Applied Pharmaceutical Science, 1(5), 44–49.
  • Snyder, N., & Adams, T. (2011). Name reactions in heterocyclic chemistry II (pp. 591–644). John Wiley & Sons, Inc.
  • Sobhy, R., Eid, M., Zhan, F., Liang, H., & Li, B. (2019). Toward understanding the in vitro anti-amylolytic effects of three structurally different phytosterols in an aqueous medium using multispectral and molecular docking studies. Journal of Molecular Liquids, 283, 225–234. https://doi.org/10.1016/j.molliq.2019.03.098
  • Stringer, T., Taylor, D., de Kock, C., Guzgay, H., Au, A., An, S. H., Sanchez, B., O'Connor, R., Patel, N., Land, K. M., Smith, P. J., Hendricks, D. T., Egan, T. J., & Smith, G. S. (2013). Synthesis, characterization, antiparasitic and cytotoxic evaluation of thioureas conjugated to polyamine scaffolds. European Journal of Medicinal Chemistry, 69, 90–98. https://doi.org/10.1016/j.ejmech.2013.08.004
  • Taha, M., Alkadi, K. A., Ismail, N. H., Imran, S., Adam, A., Kashif, S. M., Shah, S. A. A., Jamil, W., Sidiqqui, S., & Khan, K. M. (2019). Antiglycation and antioxidant potential of novel imidazo [4, 5-b] pyridine benzohydrazones. Arabian Journal of Chemistry, 12(8), 3118–3128. https://doi.org/10.1016/j.arabjc.2015.08.004
  • Taha, M., Ismail, N. H., Jamil, W., Imran, S., Rahim, F., Kashif, S. M., & Zulkefeli, M. (2016). Synthesis of 2-(2-methoxyphenyl)-5-phenyl-1, 3, 4-oxadiazole derivatives and evaluation of their antiglycation potential. Medicinal Chemistry Research, 25(2), 225–234. https://doi.org/10.1007/s00044-015-1476-8
  • Taha, M., Sultan, S., Herizal, M., Fatmi, M. Q., Selvaraj, M., Ramasamy, K., Halim, S. A., Lim, S. M., Rahim, F., Ashraf, K., & Shehzad, A. (2019). Synthesis, anticancer, molecular docking and QSAR studies of benzoylhydrazone. Journal of Saudi Chemical Society, 23(8), 1168–1179. https://doi.org/10.1016/j.jscs.2019.07.007
  • Tsuj, K., & Ishikaw, H. (1994). Novel modified tripeptied inhibitor alpha-4 beta-7 mediated lymphoid cell adhesion to MAdCAM-1. Bioorganic & Medicinal Chemistry Letters, 4, 1601–1606.
  • Tuncel, S. T., Gunal, S. E., Ekizoglu, M., Kelekci, N. G., Erdem, S. S., Bulak, E., Frey, W., & Dogan, I. (2019). Thioureas and their cyclized derivatives: Synthesis, conformational analysis and antimicrobial evaluation. Journal of Molecular Structure, 1179, 40–56. https://doi.org/10.1016/j.molstruc.2018.10.055
  • Utku, N. (2011). New Approaches to Treat Cancer – What They Can and Cannot Do. Biotechnology Healthcare, 8(4), 25–27.
  • Verma, A., & Saraf, S. K. (2008). 4-Thiazolidinone–A biologically active scaffold. European Journal of Medicinal Chemistry, 43(5), 897–905. https://doi.org/10.1016/j.ejmech.2007.07.017
  • Wayteck, L., Breckpot, K., Demeester, J., De Smedt, S. C., & Raemdonck, K. (2014). A personalized view on cancer immunotherapy. Cancer Letters, 352(1), 113–125. https://doi.org/10.1016/j.canlet.2013.09.016
  • Wenskowsky, L., Wagner, M., Reusch, J., Schreuder, H., Matter, H., Opatz, T., & Petry, S. M. (2020). Resolving binding events on the multifunctional human serum albumin. ChemMedChem. 15(9), 738–743. https://doi.org/10.1002/cmdc.202000069
  • Yoon, S.-R., & Shim, S.-M. (2015). Inhibitory effect of polyphenols in Houttuynia cordata on advanced glycation end-products (AGEs) by trapping methylglyoxal. LWT - Food Science and Technology, 61(1), 158–163. https://doi.org/10.1016/j.lwt.2014.11.014
  • Zeng, L., Ding, H., Hu, X., Zhang, G., & Gong, D. (2019). Galangin inhibits α-glucosidase activity and formation of non-enzymatic glycation products. Food Chemistry, 271, 70–79. https://doi.org/10.1016/j.foodchem.2018.07.148
  • Zou, H. Y., Li, Q., Engstrom, L. D., West, M., Appleman, V., Wong, K. A., McTigue, M., Deng, Y. L., Liu, W., Brooun, A., Timofeevski, S., McDonnell, S. R., Jiang, P., Falk, M. D., Lappin, P. B., Affolter, T., Nichols, T., Hu, W., Lam, J., … Fantin, V. R. (2015). PF-06463922 is a potent and selective next-generation ROS1/ALK inhibitor capable of blocking crizotinib-resistant ROS1 mutations. Proceedings of the National Academy of Sciences of the United States of America, 112(11), 3493–3498. https://doi.org/10.1073/pnas.1420785112

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.