192
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Structural and functional characterization of 1-deoxy-D-xylulose-5-phosphate synthase (DXS) from Acinetobacter baumannii: identification of promising lead molecules from virtual screening, molecular docking and molecular dynamics simulations

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 11598-11611 | Received 26 Sep 2022, Accepted 27 Dec 2022, Published online: 08 Feb 2023

References

  • Adcock, S. A., & Mccammon, J. A. (2006). Molecular dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 106(5), 1589–1615. https://doi.org/10.1021/cr040426m
  • Biovia. (2019). Dassault Systemes. Discovery studio visualization. Dassault Systemes Biovia.
  • Bowie, J. U., Lüthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science (New York, N.Y.), 253(5016), 164–170. https://doi.org/10.1126/science.1853201
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40(1), 82–92.
  • Gartstein, M. A., Putnam, S., & Kliewer, R. (2016). Structure–activity relationships of compounds targeting Mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate synthase Jialin. Physiology & Behavior, 176(3), 139–148. https://doi.org/10.1016/j.bmcl.2008.08.034
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). Humana Press.
  • Gulick, A. M. (2017). Nonribosomal peptide synthetase biosynthetic clusters of ESKAPE pathogens. Natural Product Reports, 34(8), 981–1009. https://doi.org/10.1039/c7np00029d
  • Handa, S., Dempsey, D. R., Ramamoorthy, D., Cook, N., Guida, W. C., Spradling, T. J., White, J. K., Woodcock, H. L., & Merkler, D. J. (2018). Mechanistic Studies of 1-Deoxy-D-Xylulose-5-Phosphate Synthase from Deinococcus radiodurans. Biochemistry & Molecular Biology Journal, 04(01), 1–11. https://doi.org/10.21767/2471-8084.100051
  • He, L., He, P., Luo, X., Li, M., Yu, L., Guo, J., … Zhao, J. (2018). The MEP pathway in Babesia orientalis apicoplast, a potential target for anti-babesiosis drug development. Parasites & Vectors, 11(1), 1–8.
  • Hollingsworth, S. A., Batabyal, D., Nguyen, B. D., & Poulos, T. L. (2016). Conformational selectivity in cytochrome P450 redox partner interactions. Proceedings of the National Academy of Sciences of the United States of America, 113(31), 8723–8728. https://doi.org/10.1073/pnas.1606474113
  • Humnabadkar, V., Jha, R. K., Ghatnekar, N., & De Sousa, S. M. (2011). A high-throughput screening assay for simultaneous selection of inhibitors of mycobacterium tuberculosis 1-deoxy-D-xylulose-5-phosphate synthase (Dxs) or 1-deoxy-D-xylulose 5-phosphate reductoisomerase (Dxr). Journal of Biomolecular Screening, 16(3), 303–312. https://doi.org/10.1177/1087057110394845
  • Jha, R. K., Jabeer Khan, R., Singh, E., Kumar, A., Jain, M., Muthukumaran, J., & Singh, A. K. (2022). An extensive computational study to identify potential inhibitors of Acyl-homoserine-lactone synthase from Acinetobacter baumannii (strain AYE). Journal of Molecular Graphics & Modelling, 114(March), 108168. https://doi.org/10.1016/j.jmgm.2022.108168
  • Jha, R. K., Khan, R. J., Parthiban, A., Singh, E., Jain, M., Amera, G. M., Singh, R. P., Ramachandran, P., Ramachandran, R., Sachithanandam, V., Muthukumaran, J., & Singh, A. K. (2021). Identifying the natural compound Catechin from tropical mangrove plants as a potential lead candidate against 3CLpro from SARS-CoV-2: An integrated in silico approach. Journal of Biomolecular Structure and Dynamics, 40(24), 13392–13411. https://doi.org/10.1080/07391102.2021.1988710
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Kaur, H., Kalia, M., & Taneja, N. (2021). Microbial Pathogenesis Identification of novel non-homologous drug targets against Acinetobacter baumannii using subtractive genomics and comparative metabolic pathway analysis. Microbial Pathogenesis, (November), 152, 104608. https://doi.org/10.1016/j.micpath.2020.104608
  • Khalil, A., El-Khouly, A. S., Elkaeed, E. B., & Eissa, I. H. (2022). The inhibitory potential of 2′-dihalo ribonucleotides against HCV: Molecular docking, molecular simulations, MM-BPSA, and DFT studies. Molecules, 27(14), 4530. https://doi.org/10.3390/molecules27144530
  • Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson, J., Tyka, M., Baker, D., & Karplus, K. (2009). Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins, 77(Suppl 9), 114–122. https://doi.org/10.1002/prot.22570
  • Kumari, R., Kumar, R., & Lynn, A., Open Source Drug Discovery Consortium. (2014). g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK - A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291. https://doi.org/10.1107/S0021889892009944
  • Lee, C. R., Lee, J. H., Park, M., Park, K. S., Bae, I. K., Kim, Y. B., Cha, C. J., Jeong, B. C., & Lee, S. H. (2017). Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Frontiers in Cellular and Infection Microbiology, 7(MAR), 55. https://doi.org/10.3389/fcimb.2017.00055
  • Luo, H., Lin, Y., Gao, F., Zhang, C. T., & Zhang, R. (2014). DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic acids Research, 42(Database issue), D574–D580.
  • Lüthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85. https://doi.org/10.1038/356083a0
  • Mao, J., Eoh, H., He, R., Wang, Y., Wan, B., Franzblau, S. G., Crick, D. C., & Kozikowski, A. P. (2008). Structure–activity relationships of compounds targeting mycobacterium tuberculosis 1-deoxy-d-xylulose 5-phosphate synthase. Bioorganic & Medicinal Chemistry Letters, 18(19), 5320–5323. https://doi.org/10.1016/j.bmcl.2008.08.034
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Saha, S., & Raghava, G. P. (2006). VICMpred: An SVM-based method for the prediction of functional proteins of Gram-negative bacteria using amino acid patterns and composition. Genomics, Proteomics & Bioinformatics, 4(1), 42–47. https://doi.org/10.1016/S1672-0229(06)60015-6
  • Sander, T., Freyss, J., von Korff, M., & Rufener, C. (2015). DataWarrior: An open-source program for chemistry aware data visualization and analysis. Journal of Chemical Information and Modeling, 55(2), 460–473. https://doi.org/10.1021/ci500588j
  • Santajit, S., & Indrawattana, N. (2016). Mechanisms of antimicrobial resistance in Pasteurellaceae. P BioMed Research International, 2016(1155), 1–8.
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363.
  • Singh, N., Cheve, G., Avery, M., & McCurdy, C. (2007). Targeting the methyl erythritol phosphate (MEP) pathway for novel antimalarial, antibacterial and herbicidal drug discovery: Inhibition of 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) enzyme. Current Pharmaceutical Design, 13(11), 1161–1177. https://doi.org/10.2174/138161207780618939
  • Singh, V. K., & Ghosh, I. (2013). Methylerythritol phosphate pathway to isoprenoids : Kinetic modeling and in silico enzyme inhibitions in Plasmodium falciparum. FEBS Letters, 587(17), 2806–2817. https://doi.org/10.1016/j.febslet.2013.06.024
  • Sippl, M. J. (1993). Recognition of errors in three-dimensional structures of proteins. Proteins, 17(4), 355–362. https://doi.org/10.1002/prot.340170404
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tsirigos, K. D., Peters, C., Shu, N., Käll, L., & Elofsson, A. (2015). The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Research, 43(W1), W401–W407. https://doi.org/10.1093/nar/gkv485
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, S. (2022). AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/nar/gkab1061
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Xiang, S., Usunow, G., Lange, G., Busch, M., & Tong, L. (2007). Crystal structure of 1-deoxy-d-xylulose 5-phosphate synthase, a crucial enzyme for isoprenoids biosynthesis. The Journal of Biological Chemistry, 282(4), 2676–2682. https://doi.org/10.1074/jbc.m610235200
  • Yu, N. Y., Wagner, J. R., Laird, M. R., Melli, G., Rey, S., Lo, R., Dao, P., Sahinalp, S. C., Ester, M., Foster, L. J., & Brinkman, F. S. L. (2010). PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics (Oxford, England), 26(13), 1608–1615. https://doi.org/10.1093/bioinformatics/btq249

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.