121
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, structure elucidation, Hirshfeld surface analysis, DFT, and molecular docking of new 6-bromo-imidazo[4,5-b]pyridine derivatives as potential tyrosyl-tRNA synthetase inhibitors

, , , , , , ORCID Icon, , & show all
Pages 12347-12362 | Received 24 Sep 2022, Accepted 02 Jan 2023, Published online: 06 Feb 2023

References

  • Ahmed, A., Fatima, A., Shakya, S., Rahman, Q. I., Ahmad, M., Javed, S., AlSalem, H. S., & Ahmad, A. (2022). Crystal structure, topology, DFT and Hirshfeld surface analysis of a novel charge transfer complex (L3) of anthraquinone and 4-{[(anthracen-9-yl) meth-yl] amino}-benzoic Acid (L2) exhibiting photocatalytic properties: An experimental and theoretical approach. Molecules, 27(5), 1724. https://doi.org/10.3390/molecules27051724
  • Akram, M., Lal, H., Shakya, S., & Varshney, R. (2022). Molecular engineering of complexation between RNA and biodegradable cationic gemini surfactants: Role of the hydrophobic chain length. Molecular Systems Design & Engineering, 7(5), 487–506.
  • Al-Otaibi, J. S., & Al-Wabli, R. I. (2015). Vibrational spectroscopic investigation (FT-IR and FT-Raman) using ab initio (HF) and DFT (B3LYP) calculations of 3-ethoxymethyl-1, 4-dihydroquinolin-4-one. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 137, 7–15. https://doi.org/10.1016/j.saa.2014.08.013
  • Alhomrani, M., Alsanie, W. F., Alamri, A. S., Alyami, H., Habeeballah, H., Alkhatabi, H. A., Felimban, R. I., Haynes, J. M., Shakya, S., & Raafat, B. M. (2022). Enhancing the antipsychotic effect of risperidone by increasing its binding affinity to serotonin receptor via picric acid: A molecular dynamics simulation. Pharmaceuticals, 15(3), 285. https://doi.org/10.3390/ph15030285
  • Baryala, Y., Zerzouf, A., Essassi, E. M., Reuter, H., & Eickmeier, H. (2007). 4-[(3-Hydroxy-5-phenyl-1H-pyrazol-4-yl) methyl]-5-phenyl-1H-pyrazol-3 (2H)-one. Acta Crystallographica Section E: Structure Reports Online, 63(5), o2554–o2556.
  • Castagnolo, D., Manetti, F., Radi, M., Bechi, B., Pagano, M., De Logu, A., Meleddu, R., Saddi, M., & Botta, M. (2009). Synthesis, biological evaluation, and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis: Part 2. Synthesis of rigid pyrazolones. Bioorganic & Medicinal Chemistry, 17(15), 5716–5721. https://doi.org/10.1016/j.bmc.2009.05.058
  • Dube, P. N., Bule, S. S., Ushir, Y. V., Kumbhare, M. R., & Dighe, P. R. (2015). Synthesis of novel 5-methyl pyrazol-3-one derivatives and their in vitro cytotoxic evaluation. Medicinal Chemistry Research, 24(3), 1070–1076.
  • Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Petersson, G., & Nakatsuji, H. (2016). Gaussian 16. Gaussian, Inc.
  • Ghorab, M. M., El-Gazzar, M. G., & Alsaid, M. S. (2014). Synthesis, characterization and anti-breast cancer activity of new 4-aminoantipyrine-based heterocycles. International Journal of Molecular Sciences, 15(5), 7539–7553. https://doi.org/10.3390/ijms15057539
  • Gouda, M. A., Eldien, H. F., Girges, M. M., & Berghot, M. A. (2016). Synthesis and antitumor evaluation of thiophene based azo dyes incorporating pyrazolone moiety. Journal of Saudi Chemical Society, 20(2), 151–157.
  • Gürsoy, A., Demirayak, Ş., Çapan, G., Erol, K., & Vural, K. (2000). Synthesis and preliminary evaluation of new 5-pyrazolinone derivatives as analgesic agents. European Journal of Medicinal Chemistry, 35(3), 359–364. https://doi.org/10.1016/s0223-5234(00)00117-3
  • Hasan, A. H., Murugesan, S., Amran, S. I., Chander, S., Alanazi, M. M., Hadda, T. B., Shakya, S., Pratama, M. R. F., Das, B., Biswas, S., & Jamalis, J. (2022). Novel thiophene Chalcones-Coumarin as acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, molecular docking, ADMET prediction and molecular dynamics simulation. Bioorganic Chemistry, 119, 105572. https://doi.org/10.1016/j.bioorg.2021.105572
  • Himly, M., Jahn-Schmid, B., Pittertschatscher, K., Bohle, B., Grubmayr, K., Ferreira, F., Ebner, H., & Ebner, C. (2003). IgE-mediated immediate-type hypersensitivity to the pyrazolone drug propyphenazone. Journal of Allergy and Clinical Immunology, 111(4), 882–888.
  • Jabri, Z., El Ibrahimi, B., Jarmoni, K., Sabir, S., Misbahi, K., Rodi, Y. K., Mashrai, A., Hökelek, T., Mague, J. T., & Sebbar, N. K. (2022). New imidazo [4, 5-B] pyridine derivatives: Synthesis, crystal structures, hirshfeld surface analysis, DFT computations and monte Carlo simulations. Journal of Chemical Technology & Metallurgy, 57(3), 451–463.
  • Jabri, Z., Jarmoni, K., Hökelek, T., Mague, J. T., Sabir, S., Kandri Rodi, Y., & Misbahi, K. (2020). Crystal structure, Hirshfeld surface analysis and DFT studies of 6-bromo-3-(12-bromododecyl)-2-(4-nitrophenyl)-4H-imidazo [4, 5-b] pyridine. Acta Crystallographica Section E: Crystallographic Communications, 76(5), 677–682.
  • Jabri, Z., Sebbar, N. K., Hökelek, T., Mague, J. T., Sabir, S., Rodi, Y. K., & Misbahi, K. (2020). Crystal structure, Hirshfeld surface analysis and DFT study of 6-bromo-3-(5-bromohexyl)-2-[4-(dimethylamino) phenyl]-3H-imidazo [4, 5-b] pyridine. Acta Crystallographica Section E: Crystallographic Communications, 76(8), 1234–1238.
  • Kakiuchi, Y., Sasaki, N., Satoh-Masuoka, M., Murofushi, H., & Murakami-Murofushi, K. (2004). A novel pyrazolone, 4, 4-dichloro-1-(2, 4-dichlorophenyl)-3-methyl-5-pyrazolone, as a potent catalytic inhibitor of human telomerase. Biochemical and Biophysical Research Communications, 320(4), 1351–1358.
  • Kale, R. P., Shaikh, M. U., Jadhav, G. R., & Gill, C. H. (2009). Eco-friendly and facile synthesis of 2-substituted-1H-imidazo [4, 5-b] pyridine in aqueous medium by air oxidation. Tetrahedron Letters, 50(16), 1780–1782.
  • Küçükgüzel, Ş. G., Rollas, S., Erdeniz, H., Kiraz, M., Ekinci, A. C., & Vidin, A. (2000). Synthesis, characterization and pharmacological properties of some 4-arylhydrazono-2-pyrazoline-5-one derivatives obtained from heterocyclic amines. European Journal of Medicinal Chemistry, 35(7–8), 761–771.
  • Levy, M. (2000). Hypersensitivity to pyrazolones. Thorax, 55(Suppl 2), S72–S74.
  • Manojkumar, P., Ravi, T. K., & Gopalakrishnan, G. (2009). Synthesis of coumarin heterocyclic derivatives with antioxidant activity and in vitro cytotoxic activity against tumour cells. Acta Pharmaceutica (Zagreb, Croatia), 59(2), 159–170.
  • Mariappan, G., Saha, B., Sutharson, L., Ankits, G., Pandey, L., & Kumar, D. (2010). The diverse pharmacological importance of pyrazolone derivatives: A Review. Journal of Pharmacy Research, 3(12), 2856–2859.
  • Mariappan, G., Saha, B., Sutharson, L., & Haldar, A. (2010). Synthesis and bioactivity evaluation of pyrazolone derivatives.
  • Marković, V., Erić, S., Stanojković, T., Gligorijević, N., Aranđelović, S., Todorović, N., Trifunović, S., Manojlović, N., Jelić, R., & Joksović, M. D. (2011). Antiproliferative activity and QSAR studies of a series of new 4-aminomethylidene derivatives of some pyrazol-5-ones. Bioorganic & Medicinal Chemistry Letters, 21(15), 4416–4421. https://doi.org/10.1016/j.bmcl.2011.06.025
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Moukha-Chafiq, O., Taha, M. L., Lazrek, H. B., Vasseur, J.-J., & Clercq, E. D. (2006). Synthesis and antiviral activity of some C2-, C4-, and C6-substituted pyrazolo [3, 4-D] pyrimidine acyclonucleosides with the alkylating chains of ACV, HBG, and ISO-DHPG. Nucleosides, Nucleotides & Nucleic Acids, 25(8), 849–860. https://doi.org/10.1080/15257770600793802
  • Moukha-Chafiq, O., Taha, M. L., Mouna, A., Lazrek, H. B., Vasseur, J.-J., & Clercq, E. D. (2007). Synthesis and biological evaluation of some α-[6-(1′-carbamoylalkylthio)-1 H-pyrazolo [3, 4-D] pyrimidin-4-yl] thioalkylcarboxamide acyclonucleosides. Nucleosides, Nucleotides & Nucleic Acids, 26(4), 335–345. https://doi.org/10.1080/15257770701296952
  • Parekh, N., Maheria, K., Patel, P., & Rathod, M. (2011). Study on antibacterial activity for multidrug resistance stain by using phenyl pyrazolones substituted 3-amino 1H-pyrazolon (3, 4-b) quinoline derivative in vitro condition. International Journal of PharmTech Research, 3, 540–548.
  • Prasad, Y. R., Rao, A. L., Prasoona, L., Murali, K., & Kumar, P. R. (2005). Synthesis and antidepressant activity of some 1, 3, 5-triphenyl-2-pyrazolines and 3-(2 ″-hydroxy naphthalen-1 ″-yl)-1, 5-diphenyl-2-pyrazolines. Bioorganic & Medicinal Chemistry Letters, 15(22), 5030–5034.
  • Qiu, X., Janson, C. A., Smith, W. W., Green, S. M., McDevitt, P., Johanson, K., Carter, P., Hibbs, M., Lewis, C., Chalker, A., Fosberry, A., Lalonde, J., Berge, J., Brown, P., Houge-Frydrych, C. S., & Jarvest, R. L. (2001). Crystal structure of Staphylococcus aureus tyrosyl‐tRNA synthetase in complex with a class of potent and specific inhibitors. Protein Science: A Publication of the Protein Society, 10(10), 2008–2016.
  • Ranjith, P., Mary, Y. S., Panicker, C. Y., Anto, P., Armaković, S., Armaković, S. J., Musiol, R., Jampilek, J., & Van Alsenoy, C. (2017). New quinolone derivative: Spectroscopic characterization and reactivity study by DFT and MD approaches. Journal of Molecular Structure, 1135, 1–14.
  • Refat, M. S., Saad, H. A., Gobouri, A. A., Alsawat, M., Adam, A. M. A., Shakya, S., Gaber, A., Alsuhaibani, A. M., & El-Megharbel, S. M. (2022). Synthesis and spectroscopic characterizations of nanostructured charge transfer complexes associated between moxifloxacin drug donor and metal chloride acceptors as a catalytic agent in a recycling of wastewater. Journal of Molecular Liquids, 349, 118121.
  • Rimarčík, J., Punyain, K., Lukeš, V., Klein, E., Dvoranová, D., Kelterer, A.-M., Milata, V., Lietava, J., & Brezová, V. (2011). Theoretical and spectroscopic study of ethyl 1, 4-dihydro-4-oxoquinoline-3-carboxylate and its 6-fluoro and 8-nitro derivatives in neutral and radical anion forms. Journal of Molecular Structure, 994(1–3), 61–69.
  • Ryabukhin, S. V., Plaskon, A. S., Volochnyuk, D. M., & Tolmachev, A. A. (2006). Synthesis of fused imidazoles and benzothiazoles from (hetero) aromatic ortho-diamines or ortho-aminothiophenol and aldehydes promoted by chlorotrimethylsilane. Synthesis, 2006(21), 3715–3726.
  • Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., & Spackman, M. A. (2021). CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. Journal of Applied Crystallography, 54(3), 1006–1011.
  • Ulahannan, R. T., Panicker, C. Y., Varghese, H. T., Van Alsenoy, C., Musiol, R., Jampilek, J., & Anto, P. (2014). Spectroscopic (FT-IR, FT-Raman) investigations and quantum chemical calculations of 4-hydroxy-2-oxo-1, 2-dihydroquinoline-7-carboxylic acid. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 121, 404–414. https://doi.org/10.1016/j.saa.2013.10.114
  • Venkata, C. S., & Rao, V. R. (2011). A facile one-pot expeditious synthesis of thiazolyl-pyrazolones. Phosphorus, Sulfur, and Silicon and the Related Elements, 186(3), 489–495.
  • Vyas, K. M., Jadeja, R., Patel, D., Devkar, R., & Gupta, V. K. (2013). A new pyrazolone based ternary Cu (II) complex: Synthesis, characterization, crystal structure, DNA binding, protein binding and anti-cancer activity towards A549 human lung carcinoma cells with a minimum cytotoxicity to non-cancerous cells. Polyhedron, 65, 262–274.
  • Walker, J. R., Fairfull-Smith, K. E., Anzai, K., Lau, S., White, P. J., Scammells, P. J., & Bottle, S. E. (2011). Edaravone containing isoindoline nitroxides for the potential treatment of cardiovascular ischaemia. MedChemComm, 2(5), 436–441.
  • Watanabe, T., Yuki, S., Egawa, M., & Nishi, H. (1994). Protective effects of MCI-186 on cerebral ischemia: Possible involvement of free radical scavenging and antioxidant actions. The Journal of Pharmacology and Experimental Therapeutics, 268(3), 1597–1604.
  • Wu, T.-W., Zeng, L.-H., Wu, J., & Fung, K.-P. (2002). Myocardial protection of MCI-186 in rabbit ischemia–reperfusion. Life Sciences, 71(19), 2249–2255.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.