132
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Aloin A inhibits SARS CoV-2 replication by targeting its binding with ACE2 - Evidence from modeling-supported molecular dynamics simulation

, , ORCID Icon &
Pages 11647-11656 | Received 26 Aug 2022, Accepted 01 Jan 2023, Published online: 08 Feb 2023

References

  • Aggarwal, A., Naskar, S., Maroli, N., Gorai, B., Dixit, N. M., & Maiti, P. K. (2021). Mechanistic insights into the effects of key mutations on SARS-CoV-2 RBD–ACE2 binding. Physical Chemistry Chemical Physics: PCCP, 23(46), 26451–26458. ‏https://doi.org/10.1039/d1cp04005g
  • Alhadrami, H. A., Sayed, A. M., Sharif, A. M., Azhar, E. I., & Rateb, M. E. (2021). Olive-derived triterpenes suppress SARS COV-2 main protease: A promising scaffold for future therapeutics. Molecules, 26(9), 2654. https://doi.org/10.3390/molecules26092654
  • Antonio, A. d S., Wiedemann, L. S. M., & Veiga-Junior, V. F. (2020). Natural products’ role against COVID-19. RSC Advances, 10(39), 23379–23393. https://doi.org/10.1039/D0RA03774E
  • Beeraka, N. M., Sadhu, S. P., Madhunapantula, S. V., Rao Pragada, R., Svistunov, A. A., Nikolenko, V. N., Mikhaleva, L. M., & Aliev, G. (2020). Strategies for targeting SARS CoV-2: Small molecule inhibitors—the current status. Frontiers in Immunology, 11, 1–22. https://doi.org/10.3389/fimmu.2020.552925
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J.L., Kolossvary, I., Moraes, M.A., Sacerdoti, F.D., Salmon, J.K., Shan, Y., Shaw, D. E. (2006, November). Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (pp. 84–es).
  • Buenz, E. J. (2008). Aloin induces apoptosis in Jurkat cells. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 22(2), 422–429. https://doi.org/10.1016/j.tiv.2007.10.013
  • Bugin, K., & Woodcock, J. (2021). Trends in COVID-19 therapeutic clinical trials. Nature Reviews. Drug Discovery, 20(4), 254–255. https://doi.org/10.1038/d41573-021-00037-3
  • Corticosteroids for COVID-19 (CORE-COVID). (2022). Corticosteroids for COVID-19 - Full Text View - ClinicalTrials.gov. Retrieved December 11, 2022.
  • COVID-19 Dashboard. (XXXX). “COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU).” https://coronavirus.jhu.edu/map.html.
  • de Wit, E., van Doremalen, N., Falzarano, D., & Munster, V. J. (2016). SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews. Microbiology, 14(8), 523–534. https://doi.org/10.1038/nrmicro.2016.81
  • Froldi, G., Baronchelli, F., Marin, E., & Grison, M. (2019). Antiglycation activity and HT-29 cellular uptake of Aloe-Emodin, Aloin, and Aloe arborescens leaf extracts. Molecules, 24(11), 2128. https://doi.org/10.3390/molecules24112128
  • Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., O'Meara, M. J., Rezelj, V. V., Guo, J. Z., Swaney, D. L., Tummino, T. A., Hüttenhain, R., Kaake, R. M., Richards, A. L., Tutuncuoglu, B., Foussard, H., Batra, J., Haas, K., Modak, M., … Krogan, N. J. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583(7816), 459–468. https://doi.org/10.1038/s41586-020-2286-9
  • Gupta, A., Gonzalez-Rojas, Y., Juarez, E., Crespo Casal, M., Moya, J., Falci, D. R., … & Shapiro, A. E. (2021). Early treatment for Covid-19 with SARS-CoV-2 neutralizing antibody sotrovimab. New England Journal of Medicine, 385(21), 1941–1950.
  • Hanson, Q. M., Wilson, K. M., Shen, M., Itkin, Z., Eastman, R. T., Shinn, P., & Hall, M. D. (2020). Targeting ACE2–RBD interaction as a platform for COVID-19 therapeutics: Development and drug-repurposing screen of an AlphaLISA proximity assay. ACS Pharmacology & Translational Science, 3(6), 1352–1360. https://doi.org/10.1021/acsptsci.0c00161
  • Hisham Shady, N., Youssif, K. A., Sayed, A. M., Belbahri, L., Oszako, T., Hassan, H. M., & Abdelmohsen, U. R. (2020). Sterols and triterpenes: Antiviral potential supported by in-silico analysis. Plants, 10(1), 41. https://doi.org/10.3390/plants10010041
  • Jackson, C. B., Farzan, M., Chen, B., & Choe, H. (2022). Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews. Molecular Cell Biology, 23(1), 3–20. https://doi.org/10.1038/s41580-021-00418-x
  • Jia, H., Neptune, E., & Cui, H. (2021). Targeting ACE2 for COVID-19 therapy: Opportunities and challenges. American Journal of Respiratory Cell and Molecular Biology, 64(4), 416–425. https://doi.org/10.1165/rcmb.2020-0322PS
  • Jiang, S., Zhang, X., & Du, L. (2021). Therapeutic antibodies and fusion inhibitors targeting the spike protein of SARS-CoV-2. Expert Opinion on Therapeutic Targets, 25(6), 415–421. https://doi.org/10.1080/14728222.2020.1820482
  • Jo, S., Kim, S., Shin, D. H., & Kim, M.-S. (2020). Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 145–151. https://doi.org/10.1080/14756366.2019.1690480
  • Khan, A., Gui, J., Ahmad, W., Haq, I., Shahid, M., Khan, A. A., Shah, A., Khan, A., Ali, L., Anwar, Z., Safdar, M., Abubaker, J., Uddin, N. N., Cao, L., Wei, D.-Q., & Mohammad, A. (2021). The SARS-CoV-2 B.1.618 variant slightly alters the spike RBD–ACE2 binding affinity and is an antibody escaping variant: a computational structural perspective. RSC Advances, 11(48), 30132–30147. https://doi.org/10.1039/D1RA04694B
  • Kim, S., Oshima, H., Zhang, H., Kern, N. R., Re, S., Lee, J., Roux, B., Sugita, Y., Jiang, W., & Im, W. (2020). CHARMM-GUI free energy calculator for absolute and relative ligand solvation and binding free energy simulations. Journal of Chemical Theory and Computation, 16(11), 7207–7218. https://doi.org/10.1021/acs.jctc.0c00884
  • Kumawat, A., Namsani, S., Pramanik, D., Roy, S., & Singh, J. K. (2021). Integrated docking and enhanced sampling-based selection of repurposing drugs for SARS-CoV-2 by targeting host dependent factors. Journal of Biomolecular Structure and Dynamics, 40(20), 9897-9908.
  • Lewis, D. S. M., Ho, J., Wills, S., Kawall, A., Sharma, A., Chavada, K., Ebert, M. C. C. J. C., Evoli, S., Singh, A., Rayalam, S., Mody, V., & Taval, S. (2022). Aloin isoforms (A and B) selectively inhibits proteolytic and deubiquitinating activity of papain like protease (PLpro) of SARS-CoV-2 in vitro. Scientific Reports, 12(1), 2145. https://doi.org/10.1038/s41598-022-06104-y
  • Liang, L-j., Wang, D., Yu, H., Wang, J., Zhang, H., Sun, B-b., Yang, F-y., Wang, Z., Xie, D-w., Feng, R-e., Xu, K-f., Wang, G-z., & Zhou, G-b (2022). Transcriptional regulation and small compound targeting of ACE2 in lung epithelial cells. Acta Pharmacologica Sinica, 43(11), 2895–2904. https://doi.org/10.1038/s41401-022-00906-6
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
  • Muratov, E. N., Amaro, R., Andrade, C. H., Brown, N., Ekins, S., Fourches, D., Isayev, O., Kozakov, D., Medina-Franco, J. L., Merz, K. M., Oprea, T. I., Poroikov, V., Schneider, G., Todd, M. H., Varnek, A., Winkler, D. A., Zakharov, A. V., Cherkasov, A., & Tropsha, A. (2021). A critical overview of computational approaches employed for COVID-19 drug discovery. Chemical Society Reviews, 50(16), 9121–9151. https://doi.org/10.1039/D0CS01065K
  • Ngo, S. T., Tam, N. M., Pham, M. Q., & Nguyen, T. H. (May 2021). Benchmark of popular free energy approaches revealing the inhibitors binding to SARS-CoV-2 Mpro. Journal of Chemical Information and Modeling, 61(5), 2302–2312. https://doi.org/10.1021/acs.jcim.1c00159
  • Orfali, R., Rateb, M. E., Hassan, H. M., Alonazi, M., Gomaa, M. R., Mahrous, N., GabAllah, M., Kandeil, A., Perveen, S., Abdelmohsen, U. R., & Sayed, A. M. (2021). Sinapic acid suppresses SARS CoV-2 replication by targeting its envelope protein. Antibiotics, 10(4), 420. https://doi.org/10.3390/antibiotics10040420
  • Park, M.-Y., Kwon, H.-J., & Sung, M.-K. (2009). Evaluation of Aloin and Aloe-Emodin as anti-inflammatory agents in aloe by using murine macrophages. Bioscience, Biotechnology, and Biochemistry, 73(4), 828–832. https://doi.org/10.1271/bbb.80714
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289
  • Pirolli, D., Righino, B., & De Rosa, M. C. (2021). Targeting SARS‐CoV‐2 spike protein/ACE2 protein‐protein interactions: a computational study. Molecular Informatics, 40(6), 2060080. https://doi.org/10.1002/minf.202060080
  • Popović, D. M., & Stuchebrukhov, A. A. (2012). Coupled electron and proton transfer reactions during the O→ E transition in bovine cytochrome c oxidase. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817(4), 506–517. ‏ https://doi.org/10.1016/j.bbabio.2011.10.013
  • Pramanik, D., Pawar, A. B., Roy, S., & Singh, J. K. (2022). Mechanistic insights of key host proteins and potential repurposed inhibitors regulating SARS‐CoV‐2 pathway. Journal of Computational Chemistry, 43(18), 1237–1250. ‏ https://doi.org/10.1002/jcc.26888
  • Razizadeh, Y., Nikfar, M., & Liu, M. (2020). Small molecules to destabilize the ACE2-RBD complex: A molecular dynamics study for potential COVID-19 therapeutics. ChemRxiv, 120(14), 2793–2804. https://doi.org/10.26434/chemrxiv.13377119.v1
  • Riva, L., Yuan, S., Yin, X., Martin-Sancho, L., Matsunaga, N., Pache, L., Burgstaller-Muehlbacher, S., De Jesus, P. D., Teriete, P., Hull, M. V., Chang, M. W., Chan, J. F.-W., Cao, J., Poon, V. K.-M., Herbert, K. M., Cheng, K., Nguyen, T.-T H., Rubanov, A., Pu, Y., … Chanda, S. K. (2020). Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 586(7827), 113–119. https://doi.org/10.1038/s41586-020-2577-1
  • Rubio-Martínez, J., Jiménez-Alesanco, A., Ceballos-Laita, L., Ortega-Alarcón, D., Vega, S., Calvo, C., Benítez, C., Abian, O., Velázquez-Campoy, A., Thomson, T. M., Granadino-Roldán, J. M., Gómez-Gutiérrez, P., & Pérez, J. J. (2021). Discovery of diverse natural products as inhibitors of SARS-CoV-2 M pro protease through virtual screening. Journal of Chemical Information and Modeling, 61(12), 6094–6106. https://doi.org/10.1021/acs.jcim.1c00951
  • Sayed, A. M., Hassan, M. H. A., Alhadrami, H. A., Hassan, H. M., Goodfellow, M., & Rateb, M. E. (2020). Extreme environments: microbiology leading to specialized metabolites. Journal of Applied Microbiology, 128(3), 630–657. https://doi.org/10.1111/jam.14386
  • Schrödinger Release. (2017). 3: Desmond molecular dynamics system, DE Shaw Research. Maestro-Desmond Interoperability Tools, Schrödinger.
  • Seeliger, D., & de Groot, B. L. (May 2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24(5), 417–422. https://doi.org/10.1007/s10822-010-9352-6
  • Susan, P. (2017). Viruses: viruses: From understanding to investigation. Chapter 17 - family coronaviridae; Academic (1st ed.). Family Coronaviridae; Academic Press.
  • Syed, A. M., Kundu, S., Ram, C., Kulhari, U., Kumar, A., Mugale, M. N., Murty, U. S., & Sahu, B. D. (2022). Aloin alleviates pathological cardiac hypertrophy via modulation of the oxidative and fibrotic response. Life Sciences, 288, 120159. https://doi.org/10.1016/j.lfs.2021.120159
  • Teng, S., Sobitan, A., Rhoades, R., Liu, D., & Tang, Q. (2021). Systemic effects of missense mutations on SARS-CoV-2 spike glycoprotein stability and receptor-binding affinity. Briefings in Bioinformatics, 22(2), 1239–1253. https://doi.org/10.1093/bib/bbaa233
  • Tian, B., & Hua, Y. (2005). Concentration-dependence of prooxidant and antioxidant effects of aloin and aloe-emodin on DNA. Food Chemistry. 91(3), 413–418. https://doi.org/10.1016/j.foodchem.2004.06.018
  • U.S. Food and Drug Administration. (2022). Know Your Treatment Options for COVID-19 | FDA. Retrieved December 11, 2022.
  • Usher, A. D. (2022). The global COVID-19 treatment divide. Lancet (London, England), 399(10327), 779–782. https://doi.org/10.1016/S0140-6736(22)00372-5
  • Verma, J., & Subbarao, N. (2021). Insilico study on the effect of SARS-CoV-2 RBD hotspot mutants’ interaction with ACE2 to understand the binding affinity and stability. Virology, 561, 107–116. https://doi.org/10.1016/j.virol.2021.06.009
  • Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K.-Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181(4), 894–904.e9. https://doi.org/10.1016/j.cell.2020.03.045
  • Williamson, G., & Kerimi, A. (2020). Testing of natural products in clinical trials targeting the SARS-CoV-2 (Covid-19) viral spike protein-angiotensin converting enzyme-2 (ACE2) interaction. Biochemical Pharmacology, 178, 114123. https://doi.org/10.1016/j.bcp.2020.114123
  • World Health Organization. (2020). World Health Organization. General’s opening remarks at the media briefing on COVID-19-18 March. World Health Organization.
  • Xiao, J., Chen, S., Chen, Y., & Su, J. (2022). The potential health benefits of aloin from genus Aloe. Phytotherapy Research: PTR, 36(2), 873–890. https://doi.org/10.1002/ptr.7371
  • Yang, L., Li, J., Guo, S., Hou, C., Liao, C., Shi, L., Ma, X., Jiang, S., Zheng, B., Fang, Y., Ye, L., & He, X. (2021). SARS-CoV-2 variants, RBD mutations, binding affinity, and antibody escape. International Journal of Molecular Sciences, 22(22), 12114. https://doi.org/10.3390/ijms222212114

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.