249
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

An immunoinformatics analysis: design of a multi-epitope vaccine against Cryptosporidium hominis by employing heat shock protein triggers the innate and adaptive immune responses

&
Pages 13563-13579 | Received 09 Jul 2022, Accepted 28 Jan 2023, Published online: 10 Feb 2023

References

  • Almofti, Y. A., Abd-Elrahman, K. A., & Eltilib, E. E. M. (2021). Vaccinomic approach for novel multi epitopes vaccine against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). BMC immunology, 22(1), 22. https://doi.org/10.1186/s12865-021-00412-0
  • Amet, N., Lee, H. F., & Shen, W. C. (2009). Insertion of the designed helical linker led to increased expression of tf-based fusion proteins. Pharmaceutical Research, 26(3), 523–528. https://doi.org/10.1007/s11095-008-9767-0
  • Arai, R., Ueda, H., Kitayama, A., Kamiya, N., & Nagamune, T. (2001). Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein engineering, 14(8), 529–532. https://doi.org/10.1093/protein/14.8.529
  • Bai, Y., Ann, D. K., & Shen, W. C. (2005). Recombinant granulocyte colony-stimulating factor-transferrin fusion protein as an oral myelopoietic agent. Proceedings of the National Academy of Sciences of the United States of America, 102(20), 7292–7296. https://doi.org/10.1073/pnas.0500062102
  • Bhattacharya, D. (2019). refineD: Improved protein structure refinement using machine learning based restrained relaxation. Bioinformatics (Oxford, England), 35(18), 3320–3328. https://doi.org/10.1093/bioinformatics/btz101
  • Carvalho, L. H., et al. (2002). IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nature Medicine, 8, 166–170.
  • Castiglione, F., Mantile, F., De Berardinis, P., & Prisco, A. (2012). How the interval between prime and boost injection affects the immune response in a computational model of the immune system. Computational and Mathematical Methods in Medicine, 2012, 842329.
  • Chen, X., Zaro, J. L., & Shen, W. C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369. https://doi.org/10.1016/j.addr.2012.09.039
  • Cinque, K., et al. (2008). Investigating public health impacts of deer in a protected drinking water supply watershed. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 58, 127–132.
  • Craig, D. B., & Dombkowski, A. A. (2013). Disulfide by Design 2.0: A web-based tool for disulfide engineering in proteins. BMC bioinformatics, 14, 346. https://doi.org/10.1186/1471-2105-14-346
  • Craig, D. B., & Dombkowski, A. A. (2013). Disulfide by Design 2.0: A web-based tool for disulfide engineering in proteins. BMC Bioinformatics, 14, 1–7.
  • Deng, H., Yu, S., Guo, Y., Gu, L., Wang, G., Ren, Z., Li, Y., Li, K., & Li, R. (2020). Development of a multivalent enterovirus subunit vaccine based on immunoinformatic design principles for the prevention of HFMD. Vaccine, 38(20), 3671–3681.
  • Dhanda, S. K., Mahajan, S., Paul, S., Yan, Z., Kim, H., Jespersen, M. C., Jurtz, V., Andreatta, M., Greenbaum, J. A., Marcatili, P., Sette, A., Nielsen, M., & Peters, B. (2019). IEDB-AR: Immune epitope database-analysis resource in 2019. Nucleic Acids Research, 47(W1), W502–w506.
  • Dombkowski, A. A., Sultana, K. Z., & Craig, D. B. (2014). Protein disulfide engineering. FEBS Letters, 588(2), 206–212. https://doi.org/10.1016/j.febslet.2013.11.024
  • Duvvuri, V. R., Duvvuri, B., Alice, C., Wu, G. E., Gubbay, J. B., & Wu, J. (2014). Preexisting CD4+ T-cell immunity in human population to avian influenza H7N9 virus: Whole proteome-wide immunoinformatics analyses. PloS One, 9(3), e91273–e91273.
  • Ekkens, M. J., Shedlock, D. J., Jung, E., Troy, A., Pearce, E. L., Shen, H., & Pearce, E. J. (2007). Th1 and Th2 cells help CD8 T-cell responses. Infection and Immunity, 75(5), 2291–2296. https://doi.org/10.1128/IAI.01328-06
  • Ellis, R. J., & Van der Vies, S. M. (1991). Molecular chaperones. Annual Review of Biochemistry, 60, 321–347. https://doi.org/10.1146/annurev.bi.60.070191.001541
  • Forster, R. (2012). Study designs for the nonclinical safety testing of new vaccine products. Journal of Pharmacological and Toxicological Methods, 66(1), 1–7. https://doi.org/10.1016/j.vascn.2012.04.003
  • Fox, L. M., & Saravolatz, L. D. (2005). Nitazoxanide: A new thiazolide antiparasitic agent. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 40(8), 1173–1180. https://doi.org/10.1086/428839
  • Gasteiger, E., et al. (2005). The proteomics protocols handbook (Ed. J.M. Walker, 571–607). Humana Press.
  • Gething, M.-J., & Sambrook, J. (1992). Protein folding in the cell. Nature, 355(6355), 33–45. https://doi.org/10.1038/355033a0
  • Ghosh, P., Bhakta, S., Bhattacharya, M., Sharma, A. R., Sharma, G., Lee, S.-S., & Chakraborty, C. (2021). A novel multi-epitopic peptide vaccine candidate against helicobacter pylori: In-silico identification, design, cloning and validation through molecular dynamics. International Journal of Peptide Research and Therapeutics, 27(2), 1149–1166.
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–W531.
  • Gupta, R. S., Bustard, K., Falah, M., & Singh, D. (1997). Sequencing of heat shock protein 70 (DnaK) homologs from Deinococcus proteolyticus and Thermomicrobium roseum and their integration in a protein-based phylogeny of prokaryotes. Journal of Bacteriology, 179, 345–357.
  • Hoffman, W., Lakkis, F. G., & Chalasani, G. (2016). B cells, antibodies, and more. Clinical Journal of the American Society of Nephrology, 11(1), 137–154. https://doi.org/10.2215/CJN.09430915
  • Huang, H., Hao, S., Li, F., Ye, Z., Yang, J., & Xiang, J. (2007). CD4+ Th1 cells promote CD8+ Tc1 cell survival, memory response, tumor localization and therapy by targeted delivery of interleukin 2 via acquired pMHC I complexes. Immunology, 120(2), 148–159.
  • Islam, S. I., et al. (2022). Immunoinformatic approaches to identify immune epitopes and design an epitope-based subunit vaccine against emerging Tilapia Lake Virus (TiLV). Aquaculture Journal, 2, 186–202.
  • Jain, P., Joshi, A., Akhtar, N., Krishnan, S., & Kaushik, V. (2021). An immunoinformatics study: Designing multivalent T-cell epitope vaccine against canine circovirus. Journal of Genetic Engineering and Biotechnology, 19, 1–11.
  • Jespersen, M. C., Peters, B., Nielsen, M., & Marcatili, P. (2017). BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research, 45(W1), W24–w29. https://doi.org/10.1093/nar/gkx346
  • Karimi, M., et al. (2016). Reactivity of disulfide bonds is markedly affected by structure and environment: Implications for protein modification and stability. Scientific Reports, 6, 1–12.
  • Khalil, I. A., et al. (2018). Morbidity, mortality, and long-term consequences associated with diarrhoea from Cryptosporidium infection in children younger than 5 years: A meta-analyses study. The Lancet Global Health, 6, e758–e768.
  • Khatoon, N., Pandey, R. K., & Prajapati, V. K. (2017). Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Scientific Reports, 7, 8285.
  • Ko, J., Park, H., Heo, L., & Seok, C. (2012). GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research, 40(Web Server issue), W294–W297. https://doi.org/10.1093/nar/gks493
  • Li, W., Cowley, A., Uludag, M., Gur, T., McWilliam, H., Squizzato, S., Park, Y. M., Buso, N., & Lopez, R. (2015). The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Research, 43(W1), W580–W584.
  • Lindquist, S., & Craig, E. A. (1988). The heat-shock proteins. Annual Review of Genetics, 22, 631–677. https://doi.org/10.1146/annurev.ge.22.120188.003215
  • Liu, T., Wang, Y., Luo, X., Li, J., Reed, S. A., Xiao, H., Young, T. S., & Schultz, P. G. (2016). Enhancing protein stability with extended disulfide bonds. Proceedings of the National Academy of Sciences of the United States of America, 113(21), 5910–5915.
  • Mahmoud, N. A., Elshafei, A. M., & Almofti, Y. A. (2022). A novel strategy for developing vaccine candidate against Jaagsiekte sheep retrovirus from the envelope and gag proteins: An in-silico approach. BMC Veterinary Research, 18(1), 343. https://doi.org/10.1186/s12917-022-03431-0
  • McDonald, V. (2011). Cryptosporidiosis: host immune responses and the prospects for effective immunotherapies. Expert Review of Anti-Infective Therapy, 9(11), 1077–1086. https://doi.org/10.1586/eri.11.123
  • McGuffin, L. J., Bryson, K., & Jones, D. T. (2000). The PSIPRED protein structure prediction server. Bioinformatics (Oxford, England), 16(4), 404–405. https://doi.org/10.1093/bioinformatics/16.4.404
  • Mohamed, S., Almofti, Y., & Abd Elrahman, K. (2021). Exploring Crimean Congo hemorrhagic fever virus glycoprotein M to predict multi-epitopes based peptide vaccine using immunoinformatics approach. Clinical Microbiology, 10, 122.
  • Okhuysen, P. C., Chappell, C. L., Crabb, J. H., Sterling, C. R., & DuPont, H. L. (1999). Virulence of three distinct Cryptosporidium parvum isolates for healthy adults. The Journal of Infectious Diseases, 180(4), 1275–1281. https://doi.org/10.1086/315033
  • Oldstone, M. B. (1987). Molecular mimicry and autoimmune disease. Cell, 50(6), 819–820. https://doi.org/10.1016/0092-8674(87)90507-1
  • Onile, O. S., et al. (2022). Immunoinformatics studies and design of a potential multi-epitope peptide vaccine to combat the fatal visceral Leishmaniasis. Vaccines, 10, 1598.
  • Onile, O. S., Fadahunsi, A. I., Adekunle, A. A., Oyeyemi, B. F., & Anumudu, C. I. (2020). An immunoinformatics approach for the design of a multi-epitope subunit vaccine for urogenital schistosomiasis. PeerJ, 8, e8795–e8795. https://doi.org/10.7717/peerj.8795
  • Pandey, R. K., Bhatt, T. K., & Prajapati, V. K. (2018). Novel immunoinformatics approaches to design multi-epitope subunit vaccine for malaria by investigating anopheles salivary protein. Scientific Reports, 8(1), 1125. https://doi.org/10.1038/s41598-018-19456-1
  • Pandya, N., & Kumar, A. (2021). Piperine analogs arrest c-myc gene leading to downregulation of transcription for targeting cancer. Scientific Reports, 11(1), 22909.
  • Pandya, N., & Kumar, A. (2022). A multi-epitope vaccine candidate developed from unique immunogenic epitopes against Cryptosporidium hominis by utilizing an immunoinformatics-driven approach. Journal of Biomolecular Structure and Dynamics, 1–18.
  • Pandya, N., & Kumar, A. (2022b). Immunoinformatics analysis for design of multi-epitope subunit vaccine by using heat shock proteins against Schistosoma mansoni. Journal of Biomolecular Structure & Dynamics, 1–20.
  • Pandya, N., Rani, R., Kumar, V., & Kumar, A. (2023). Discovery of a potent guanidine derivative that selectively binds and stabilizes the human BCL-2 G-quadruplex DNA and downregulates the transcription. Gene, 851, 146975.
  • Pandya, N., Singh, M., Rani, R., Kumar, V., & Kumar, A. (2022). G-quadruplex-mediated specific recognition, stabilization and transcriptional repression of bcl-2 by small molecule. Archives of Biochemistry and Biophysics, 109483
  • Pearce, R., & Zhang, Y. (2021). Toward the solution of the protein structure prediction problem. The Journal of Biological Chemistry, 297(1), 100870. https://doi.org/10.1016/j.jbc.2021.100870
  • Ryan, U. N. A., Fayer, R., & Xiao, L. (2014). Cryptosporidium species in humans and animals: Current understanding and research needs. Parasitology, 141(13), 1667–1685.
  • Shanmugam, A., Rajoria, S., George, A. L., Mittelman, A., Suriano, R., & Tiwari, R. K. (2012). Synthetic Toll like receptor-4 (TLR-4) agonist peptides as a novel class of adjuvants. PloS One, 7(2), e30839.
  • Sow, S. O., et al. (2016). The burden of Cryptosporidium diarrheal disease among children< 24 months of age in moderate/high mortality regions of sub-Saharan Africa and South Asia, utilizing data from the Global Enteric Multicenter Study (GEMS). PLOS Neglected Tropical Diseases, 10, e0004729.
  • Striepen, B. (2013). Parasitic infections: Time to tackle cryptosporidiosis. Nature, 503(7475), 189–191. https://doi.org/10.1038/503189a
  • Sun, J.-B., Czerkinsky, C., & Holmgren, J. (2010). Mucosally induced immunological tolerance, regulatory T cells and the adjuvant effect by cholera toxin B subunit. Scandinavian Journal of Immunology, 71(1), 1–11. https://doi.org/10.1111/j.1365-3083.2009.02321.x
  • van Eden, W., et al. (1988). Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature, 331, 171–173.
  • Vita, R., Overton, J. A., Greenbaum, J. A., Ponomarenko, J., Clark, J. D., Cantrell, J. R., Wheeler, D. K., Gabbard, J. L., Hix, D., Sette, A., & Peters, B. (2015). The immune epitope database (IEDB) 3.0. Nucleic Acids Research, 43(Database issue), D405–D412.
  • Walker, C. L. F., Rudan, I., Liu, L., Nair, H., Theodoratou, E., Bhutta, Z. A., O'Brien, K. L., Campbell, H., & Black, R. E. (2013). Global burden of childhood pneumonia and diarrhoea. Lancet (London, England), 381(9875), 1405–1416.
  • Wang, P., Sidney, J., Kim, Y., Sette, A., Lund, O., Nielsen, M., & Peters, B. (2010). Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics, 11, 568.
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–410. https://doi.org/10.1093/nar/gkm290
  • William, J. S., et al. (2007). Cryptosporidiosis in developing countries. The Journal of Infection in Developing Countries, 1.
  • Young, D., Lathigra, R., Hendrix, R., Sweetser, D., & Young, R. A. (1988). Stress proteins are immune targets in leprosy and tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 85(12), 4267–4270. https://doi.org/10.1073/pnas.85.12.4267
  • Zabetakis, D., Olson, M. A., Anderson, G. P., Legler, P. M., & Goldman, E. R. (2014). Evaluation of disulfide bond position to enhance the thermal stability of a highly stable single domain antibody. PloS One, 9(12), e115405. https://doi.org/10.1371/journal.pone.0115405
  • Zavodszky, M., Chen, C. W., Huang, J. K., Zolkiewski, M., Wen, L., & Krishnamoorthi, R. (2001). Disulfide bond effects on protein stability: Designed variants of Cucurbita maxima trypsin inhibitor‐V. Protein Science: A Publication of the Protein Society, 10(1), 149–160.
  • Zepp, F. (2016). Vaccine design (pp. 57–84). Springer.
  • Zhao, H. L., et al. (2008). Increasing the homogeneity, stability and activity of human serum albumin and interferon-alpha2b fusion protein by linker engineering. Protein Expression and Purification, 61, 73–77.
  • Zheng, W., Ruan, J., Hu, G., Wang, K., Hanlon, M., & Gao, J. (2015). Analysis of conformational B-cell epitopes in the antibody-antigen complex using the depth function and the convex hull. PloS One, 10(8), e0134835.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.