214
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Virtual screening of bioactive anti-SARS-CoV natural products and identification of 3β,12-diacetoxyabieta-6,8,11,13-tetraene as a potential inhibitor of SARS-CoV-2 virus and its infection related pathways by MD simulation and network pharmacology

ORCID Icon, ORCID Icon, , ORCID Icon, , , , , , & ORCID Icon show all
Pages 13923-13936 | Received 02 Nov 2022, Accepted 28 Jan 2023, Published online: 14 Feb 2023

References

  • Ahmad, I., Kumar, D., & Patel, H. (2022). Computational investigation of phytochemicals from Withania somnifera (Indian ginseng/ashwagandha) as plausible inhibitors of GluN2B-containing NMDA receptors. Journal of Biomolecular Structure & Dynamics, 40(17), 7991–8003. https://doi.org/10.1080/07391102.2021.1905553
  • Mohd Aluwi, M. F. F., Rullah, K., Yamin, B. M., Leong, S. W., Abdul Bahari, M. N., Lim, S. J., Mohd Faudzi, S. M., Jalil, J., Abas, F., Mohd Fauzi, N., Ismail, N. H., Jantan, I., & Lam, K. W. (2016). Synthesis of unsymmetrical monocarbonyl curcumin analogues with potent inhibition on prostaglandin E2 production in LPS-induced murine and human macrophages cell lines. Bioorganic & Medicinal Chemistry Letters, 26(10), 2531–2538. https://doi.org/10.1016/j.bmcl.2016.03.092
  • Aruoma, O. I., Spencer, J. P., Rossi, R., Aeschbach, R., Khan, A., Mahmood, N., Munoz, A., Murcia, A., Butler, J., & Halliwell, B. (1996). An evaluation of the antioxidant and antiviral action of extracts of rosemary and Provencal herbs. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 34(5), 449–456. https://doi.org/10.1016/0278-6915(96)00004-X
  • Appelberg, S., Gupta, S., Svensson Akusjärvi, S., Ambikan, A. T., Mikaeloff, F., Saccon, E., Végvári, Á., Benfeitas, R., Sperk, M., Ståhlberg, M., Krishnan, S., Singh, K., Penninger, J. M., Mirazimi, A., & Neogi, U. (2020). Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerging Microbes & Infections, 9(1), 1748–1760. https://doi.org/10.1080/22221751.2020.1799723
  • Batista, O., Simões, M. F., Duarte, A., Valdeira, M. L., de la Torre, M. C., & Rodríguez, B. (1995). An antimicrobial abietane from the root of Plectranthus hereroensis. Phytochemistry, 38(1), 167–169. https://doi.org/10.1016/0031-9422(94)00586-I
  • Bagca, B. G., & Avci, C. B. (2020). The potential of JAK/STAT pathway inhibition by ruxolitinib in the treatment of COVID-19. Cytokine & Growth Factor Reviews, 54, 51–61.
  • Brown, G. R., Hem, V., Katz, K. S., Ovetsky, M., Wallin, C., Ermolaeva, O., Tolstoy, I., Tatusova, T., Pruitt, K. D., Maglott, D. R., & Murphy, T. D. (2015). Gene: A gene-centered information resource at NCBI. Nucleic Acids Research, 43(Database issue), D36–D42. https://doi.org/10.1093/nar/gku1055
  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: series B (Methodological), 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  • Bouhaddou, M., Memon, D., Meyer, B., White, K. M., Rezelj, V. V., Correa Marrero, M., Polacco, B. J., Melnyk, J. E., Ulferts, S., Kaake, R. M., Batra, J., Richards, A. L., Stevenson, E., Gordon, D. E., Rojc, A., Obernier, K., Fabius, J. M., Soucheray, M., Miorin, L., … Krogan, N. J. (2020). The global phosphorylation landscape of SARS-CoV-2 infection. Cell, 182(3), 685–712.e19. https://doi.org/10.1016/j.cell.2020.06.034
  • Bouyahya, A., El Omari, N., Elmenyiy, N., Hakkour, M., Balahbib, A., Guaouguaou, E., & Belmehdi, O. (2020). Therapeutic strategies of COVID-19: From natural compounds to vaccine trials. Biointerface Research in Applied Chemistry, 11(1), 8318–8373.
  • Cavasotto, C. N., & Di Filippo, J. I. (2021). In Silico drug repurposing for COVID‐19: Targeting SARS‐CoV‐2 proteins through docking and consensus ranking. Molecular Informatics, 40(1), 2000115. https://doi.org/10.1002/minf.202000115
  • Cheong, C. S. Y., Khan, S. U., Ahmed, N., & Narayanan, K. (2022). Identification of dual active sites in Caenorhabditis elegans GANA-1 protein: An ortholog of the human α-GAL a and α-NAGA enzymes. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2022.2084162
  • Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., & Lin, C. Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8(4), 1–7. https://doi.org/10.1186/1752-0509-8-S4-S11
  • Christensen, J. E., & Thomsen, A. R. (2009). Co‐ordinating innate and adaptive immunity to viral infection: Mobility is the key. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 117(5–6), 338–355. https://doi.org/10.1111/j.1600-0463.2009.02451.x
  • Cho, J. K., Curtis-Long, M. J., Lee, K. H., Kim, D. W., Ryu, H. W., Yuk, H. J., & Park, K. H. (2013). Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorganic & Medicinal Chemistry, 21(11), 3051–3057. https://doi.org/10.1016/j.bmc.2013.03.027
  • Dai, W., Zhang, B., Jiang, X.-M., Su, H., Li, J., Zhao, Y., Xie, X., Jin, Z., Peng, J., Liu, F., Li, C., Li, Y., Bai, F., Wang, H., Cheng, X., Cen, X., Hu, S., Yang, X., Wang, J., … Liu, H. (2020). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science (New York, N.Y.), 368(6497), 1331–1335. https://doi.org/10.1126/science.abb4489
  • de Farias Lelis, D., de Freitas, D. F., Machado, A. S., Crespo, T. S., & Santos, S. H. S. (2019). Angiotensin-(1-7), adipokines and inflammation. Metabolism: clinical and Experimental, 95, 36–45. https://doi.org/10.1016/j.metabol.2019.03.006
  • Dutta, D., Ghosh, S., Pandit, K., Mukhopadhyay, P., & Chowdhury, S. (2012). Leptin and cancer: Pathogenesis and modulation. Indian Journal of Endocrinology and Metabolism, 16(Suppl 3), S596–S600. https://doi.org/10.4103/2230-8210.105577
  • Elmezayen, A. D., Al-Obaidi, A., Şahin, A. T., & Yelekçi, K. (2021). Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure & Dynamics, 39(8), 2980–2992. https://doi.org/10.1080/07391102.2020.1758791
  • Fonseca, T., Gigante, B., Marques, M. M., Gilchrist, T. L., & De Clercq, E. (2004). Synthesis and antiviral evaluation of benzimidazoles, quinoxalines and indoles from dehydroabietic acid. Bioorganic & Medicinal Chemistry, 12(1), 103–112. https://doi.org/10.1016/j.bmc.2003.10.013
  • Ganesan, M. S., Raja, K. K., Murugesan, S., Kumar, B. K., Rajagopal, G., & Thirunavukkarasu, S. (2020). Synthesis, biological evaluation, molecular docking, molecular dynamics and DFT studies of quinoline-fluoroproline amide hybrids. Journal of Molecular Structure, 1217, 128360. https://doi.org/10.1016/j.molstruc.2020.128360
  • Gigante, B., Santos, C., Silva, A. M., Curto, M. J. M., Nascimento, M. S. J., Pinto, E., Pedro, M., Cerqueira, F., Pinto, M. M., Duarte, M. P., Laires, A., Rueff, J., Gonçalves, J., Pegado, M. I., & Valdeira, M. L. (2003). Catechols from abietic acid: Synthesis and evaluation as bioactive compounds. Bioorganic & Medicinal Chemistry, 11(8), 1631–1638. https://doi.org/10.1016/S0968-0896(03)00063-4
  • Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68. https://doi.org/10.1021/cc9800071
  • Govender, N., Khaliq, O. P., Moodley, J., & Naicker, T. (2021). Insulin resistance in COVID-19 and diabetes. Primary Care Diabetes, 15(4), 629–634. https://doi.org/10.1016/j.pcd.2021.04.004
  • Halim, S. A., Khan, S., Khan, A., Wadood, A., Mabood, F., Hussain, J., & Al-Harrasi, A. (2017). Targeting dengue virus NS-3 helicase by ligand based pharmacophore modeling and structure based virtual screening. Frontiers in Chemistry, 5, 88. https://doi.org/10.3389/fchem.2017.00088
  • Hasan, A., Paray, B. A., Hussain, A., Qadir, F. A., Attar, F., Aziz, F. M., Sharifi, M., Derakhshankhah, H., Rasti, B., Mehrabi, M., Shahpasand, K., Saboury, A. A., & Falahati, M. (2021). A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. Journal of Biomolecular Structure & Dynamics, 39(8), 3025–3033. https://doi.org/10.1080/07391102.2020.1754293
  • Hua, J., & Shaw, R. (2020). Corona virus (Covid-19) “infodemic” and emerging issues through a data lens: The case of china. International Journal of Environmental Research and Public Health, 17(7), 2309. https://doi.org/10.3390/ijerph17072309
  • https://www.worldometers.info/coronavirus/.
  • https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
  • Islam, M. T., Sarkar, C., El‐Kersh, D. M., Jamaddar, S., Uddin, S. J., Shilpi, J. A., & Mubarak, M. S. (2020). Natural products and their derivatives against coronavirus: A review of the non‐clinical and pre‐clinical data. Phytotherapy Research, 34(10), 2471–2492. https://doi.org/10.1002/ptr.6700
  • Islam, R., Parves, M. R., Paul, A. S., Uddin, N., Rahman, M. S., Mamun, A. A., Hossain, M. N., Ali, M. A., & Halim, M. A. (2021). A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 39(9), 3213–3224. https://doi.org/10.1080/07391102.2020.1761883
  • Joffry, S. M., Yob, N. J., Rofiee, M. S., Affandi, M. M. R., Suhaili, Z., Othman, F., & Zakaria, Z. A. (2012). Melastoma malabathricum (L.) Smith ethnomedicinal uses, chemical constituents, and pharmacological properties: A review. Evidence-Based Complementary and Alternative Medicine, 2012, 1-48.
  • Kindrachuk, J., Ork, B., Hart, B. J., Mazur, S., Holbrook, M. R., Frieman, M. B., Traynor, D., Johnson, R. F., Dyall, J., Kuhn, J. H., Olinger, G. G., Hensley, L. E., & Jahrling, P. B. (2015). Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrobial Agents and Chemotherapy, 59(2), 1088–1099. https://doi.org/10.1128/AAC.03659-14
  • Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., & Tanabe, M. (2019). New approach for understanding genome variations in KEGG. Nucleic Acids Research, 47(D1), D590–D595. https://doi.org/10.1093/nar/gky962
  • Kopecky-Bromberg, S. A., Martinez-Sobrido, L., & Palese, P. (2006). 7a protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 mitogen-activated protein kinase. Journal of Virology, 80(2), 785–793. https://doi.org/10.1128/JVI.80.2.785-793.2006
  • Khalil, B. A., Elemam, N. M., & Maghazachi, A. A. (2021). Chemokines and chemokine receptors during COVID-19 infection. Computational and Structural Biotechnology Journal, 19, 976–988. https://doi.org/10.1016/j.csbj.2021.01.034
  • Khan, N., & Fahad, S. (2020). Critical review of the present situation of corona virus in China. Available at SSRN 3543177.
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Lee, C., & Choi, W. J. (2021). Overview of COVID-19 inflammatory pathogenesis from the therapeutic perspective. Archives of Pharmacal Research, 44(1), 99–116. https://doi.org/10.1007/s12272-020-01301-7
  • Luo, W., Li, Y. X., Jiang, L. J., Chen, Q., Wang, T., & Ye, D. W. (2020). Targeting JAK-STAT signaling to control cytokine release syndrome in COVID-19. Trends in Pharmacological Sciences, 41(8), 531–543. https://doi.org/10.1016/j.tips.2020.06.007
  • Ma, C., Sacco, M. D., Hurst, B., Townsend, J. A., Hu, Y., Szeto, T., Zhang, X., Tarbet, B., Marty, M. T., Chen, Y., & Wang, J. (2020). Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Research, 30(8), 678–692. https://doi.org/10.1038/s41422-020-0356-z
  • Mahmood, N. D., Nasir, N. L. M., Rofiee, M. S., Tohid, S. F. M., Ching, S. M., Teh, L. K., Salleh, M. Z., & Zakaria, Z. A. (2014). Muntingia calabura: A review of its traditional uses, chemical properties, and pharmacological observations. Pharmaceutical Biology, 52(12), 1598–1623. https://doi.org/10.3109/13880209.2014.908397
  • Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629–661. https://doi.org/10.1021/acs.jnatprod.5b01055
  • Ongaro, A., Oselladore, E., Memo, M., Ribaudo, G., & Gianoncelli, A. (2021). Insight into the LFA-1/SARS-CoV-2 Orf7a complex by protein–protein docking, molecular dynamics, and MM-GBSA calculations. Journal of Chemical Information and Modeling, 61(6), 2780–2787. https://doi.org/10.1021/acs.jcim.1c00198
  • Pardo, J., Shukla, A. M., Chamarthi, G., & Gupte, A. (2020). The journey of remdesivir: From Ebola to COVID-19. Drugs in Context, 9, 1-9. https://doi.org/10.7573/dic.2020-4-14.
  • Pariš, A., Štrukelj, B., Renko, M., Turk, V., Pukl, M., Umek, A., & Korant, B. D. (1993). Inhibitory effect of carnosolic acid on HIV-1 protease in cell-free assays. Journal of Natural Products, 56(8), 1426–1430. https://doi.org/10.1021/np50098a031
  • Ranadheera, C., Coombs, K. M., & Kobasa, D. (2018). Comprehending a killer: The Akt/mTOR signaling pathways are temporally high-jacked by the highly pathogenic 1918 influenza virus. EBioMedicine, 32, 142–163. https://doi.org/10.1016/j.ebiom.2018.05.027
  • Roney, M., Huq, A. M., Rullah, K., Hamid, H. A., Imran, S., Islam, M. A., & Mohd Aluwi, M. F. F. (2021). Virtual screening-based identification of potent DENV-3 RdRp protease inhibitors via in-house usnic acid derivative database. Journal of Computational Biophysics and Chemistry, 20(08), 797–814. https://doi.org/10.1142/S2737416521500496
  • Saul, S., & Einav, S. (2020). Old drugs for a new virus: Repurposed approaches for combating COVID-19. ACS Infectious Diseases, 6(9), 2304–2318. https://doi.org/10.1021/acsinfecdis.0c00343
  • Staschke, K. A., Hatch, S. D., Tang, J. C., Hornback, W. J., Munroe, J. E., Colacino, J. M., & Muesing, M. A. (1998). Inhibition of influenza virus hemagglutinin-mediated membrane fusion by a compound related to podocarpic acid. Virology, 248(2), 264–274.
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
  • Shimobayashi, M., Albert, V., Woelnerhanssen, B., Frei, I. C., Weissenberger, D., Meyer-Gerspach, A. C., Clement, N., Moes, S., Colombi, M., Meier, J. A., Swierczynska, M. M., Jenö, P., Beglinger, C., Peterli, R., & Hall, M. N. (2018). Insulin resistance causes inflammation in adipose tissue. The Journal of Clinical Investigation, 128(4), 1538–1550. https://doi.org/10.1172/JCI96139
  • Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15545–15550. https://doi.org/10.1073/pnas.0506580102
  • Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. V. (2019). STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
  • Verma, S., Twilley, D., Esmear, T., Oosthuizen, C. B., Reid, A. M., Nel, M., & Lall, N. (2020). Anti-SARS-CoV natural products with the potential to inhibit SARS-CoV-2 (COVID-19). Frontiers in Pharmacology, 11, 1514. https://doi.org/10.3389/fphar.2020.561334
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0
  • Wen, C.-C., Kuo, Y.-H., Jan, J.-T., Liang, P.-H., Wang, S.-Y., Liu, H.-G., Lee, C.-K., Chang, S.-T., Kuo, C.-J., Lee, S.-S., Hou, C.-C., Hsiao, P.-W., Chien, S.-C., Shyur, L.-F., & Yang, N.-S. (2007). Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. Journal of Medicinal Chemistry, 50(17), 4087–4095. https://doi.org/10.1021/jm070295s
  • Yeleswaram, S., Smith, P., Burn, T., Covington, M., Juvekar, A., Li, Y., Squier, P., & Langmuir, P. (2020). Inhibition of cytokine signaling by ruxolitinib and implications for COVID-19 treatment. Clinical Immunology (Orlando, Fla.), 218, 108517. https://doi.org/10.1016/j.clim.2020.108517
  • Zandi, K., Musall, K., Oo, A., Cao, D., Liang, B., Hassandarvish, P., & Schinazi, R. F. (2021). Baicalein and baicalin inhibit SARS-CoV-2 RNA-dependent-RNA polymerase. Microorganisms, 9(5), 893. https://doi.org/10.3390/microorganisms9050893
  • Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., & Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. The Lancet, 395(10229), 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3
  • Zhou, J., Fang, L., Yang, Z., Xu, S., Lv, M., Sun, Z., Chen, J., Wang, D., Gao, J., & Xiao, S. (2019). Identification of novel proteolytically inactive mutations in coronavirus 3C‐like protease using a combined approach. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 33(12), 14575–14587. https://doi.org/10.1096/fj.201901624RR

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.