248
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Structural modeling and analyses of genetic variations in the human XPC nucleotide excision repair protein

& ORCID Icon
Pages 13535-13562 | Received 29 Jul 2022, Accepted 27 Jan 2023, Published online: 08 Mar 2023

References

  • Anantharaman, V., Koonin, E. V., & Aravind, L. (2001). Peptide-N-glycanases and DNA repair proteins, Xp-C/Rad4, are, respectively, active and inactivated enzymes sharing a common transglutaminase fold. Human Molecular Genetics, 10(16), 1627–1630. https://doi.org/10.1093/hmg/10.16.1627
  • Apelt, K., Lans, H., Scharer, O. D., & Luijsterburg, M. S. (2021). Nucleotide excision repair leaves a mark on chromatin: DNA damage detection in nucleosomes. Cellular and Molecular Life Sciences: CMLS, 78(24), 7925–7942. https://doi.org/10.1007/s00018-021-03984-7
  • Araki, M., Masutani, C., Takemura, M., Uchida, A., Sugasawa, K., Kondoh, J., Ohkuma, Y., & Hanaoka, F. (2001). Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. The Journal of Biological Chemistry, 276(22), 18665–18672. https://doi.org/10.1074/jbc.M100855200
  • Aravind, L., Anantharaman, V., Balaji, S., Babu, M. M., & Iyer, L. M. (2005). The many faces of the helix-turn-helix domain: Transcription regulation and beyond. FEMS Microbiology Reviews, 29(2), 231–262. https://doi.org/10.1016/j.femsre.2004.12.008
  • Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1), W344–W350. https://doi.org/10.1093/nar/gkw408
  • Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics (Oxford, England), 27(3), 343–350. https://doi.org/10.1093/bioinformatics/btq662
  • Bernardes de Jesus, B. M., Bjoras, M., Coin, F., & Egly, J. M. (2008). Dissection of the molecular defects caused by pathogenic mutations in the DNA repair factor XPC. Molecular and Cellular Biology, 28(23), 7225–7235. https://doi.org/10.1128/MCB.00781-08
  • Bidon, B., Iltis, I., Semer, M., Nagy, Z., Larnicol, A., Cribier, A., Benkirane, M., Coin, F., Egly, J. M., & Le May, N. (2018). XPC is an RNA polymerase II cofactor recruiting ATAC to promoters by interacting with E2F1. Nature Communications, 9(1), 2610. https://doi.org/10.1038/s41467-018-05010-0
  • Bunick, C. G., Miller, M. R., Fuller, B. E., Fanning, E., & Chazin, W. J. (2006). Biochemical and structural domain analysis of xeroderma pigmentosum complementation group C protein. Biochemistry, 45(50), 14965–14979. https://doi.org/10.1021/bi061370o
  • Buß, O., Rudat, J., & Ochsenreither, K. (2018). FoldX as protein engineering tool: Better than random based approaches? Computational and Structural Biotechnology Journal, 16, 25–33. https://doi.org/10.1016/j.csbj.2018.01.002
  • Camenisch, U., Traeutlein, D., Clement, F. C., Fei, J., Leitenstorfer, A., Ferrando-May, E., & Naegeli, H. (2009). Two-stage dynamic DNA quality check by xeroderma pigmentosum group C protein. EMBO Journal, 28, 2387–2399. https://doi.org/10.1038/emboj.2009.187
  • Cattoglio, C., Zhang, E. T., Grubisic, I., Chiba, K., Fong, Y. W., & Tjian, R. (2015). Functional and mechanistic studies of XPC DNA-repair complex as transcriptional coactivator in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 112(18), E2317–2326. https://doi.org/10.1073/pnas.1505569112
  • Chakraborty, S., Steinbach, P. J., Paul, D., Mu, H., Broyde, S., Min, J. H., & Ansari, A. (2018). Enhanced spontaneous DNA twisting/bending fluctuations unveiled by fluorescence lifetime distributions promote mismatch recognition by the Rad4 nucleotide excision repair complex. Nucleic Acids Research, 46(3), 1240–1255. https://doi.org/10.1093/nar/gkx1216
  • Charbonnier, J.-B., Renaud, E., Miron, S., Le Du, M. H., Blouquit, Y., Duchambon, P., Christova, P., Shosheva, A., Rose, T., Angulo, J. F., & Craescu, C. T. (2007). Structural, thermodynamics, and cellular characterization of human centrin 2 interaction with Xeroderma pigmentosum group C protein. Journal of Molecular Biology, 373(4), 1032–1046. https://doi.org/10.1016/j.jmb.2007.08.046
  • Chavanne, F., Broughton, B. C., Pietra, D., Nardo, T., Browitt, A., Lehmann, A. R., & Stefanini, M. (2000). Mutations in the XPC gene in families with xeroderma pigmentosum and consequences at the cell, protein, and transcript levels. Cancer Research, 60(7), 1974–1982.
  • Chen, X., Velmurugu, Y., Zheng, G., Park, B., Shim, Y., Kim, Y., Liu, L., Van Houten, B., He, C., Ansari, A., & Min, J.-H. (2015). Kinetic gating mechanism of DNA damage recognition by Rad4/XPC. Nature Communications, 6, 5849. https://doi.org/10.1038/ncomms6849
  • Clement, F. C., Kaczmarek, N., Mathieu, N., Tomas, M., Leitenstorfer, A., Ferrando-May, E., & Naegeli, H. (2011). Dissection of the xeroderma pigmentosum group C protein function by site- directed mutagenesis. Antioxidants & Redox Signaling, 14(12), 2479–2490. https://doi.org/10.1089/ars.2010.3399
  • Dai, Q. S., Hua, R. X., Zeng, R. F., Long, J. T., & Peng, Z. W. (2014). XPC gene polymorphisms contribute to bladder cancer susceptibility: A meta-analysis. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 35(1), 447–453. https://doi.org/10.1007/s13277-013-1062-y
  • den Dulk, B., van Eijk, P., de Ruijter, M., Brandsma, J. A., & Brouwer, J. (2008). The NER protein Rad33 shows functional homology to human Centrin2 and is involved in modification of Rad4. DNA Repair, 7(6), 858–868. https://doi.org/10.1016/j.dnarep.2008.02.004
  • DiGiovanna, J. J., & Kraemer, K. H. (2012). Shining a light on xeroderma pigmentosum. The Journal of Investigative Dermatology, 132(3 Pt 2), 785–796. https://doi.org/10.1038/jid.2011.426
  • Fassihi, H., Sethi, M., Fawcett, H., Wing, J., Chandler, N., Mohammed, S., Craythorne, E., Morley, A. M. S., Lim, R., Turner, S., Henshaw, T., Garrood, I., Giunti, P., Hedderly, T., Abiona, A., Naik, H., Harrop, G., McGibbon, D., Jaspers, N. G. J., … Lehmann, A. R. (2016). Deep phenotyping of 89 xeroderma pigmentosum patients reveals unexpected heterogeneity dependent on the precise molecular defect. Proceedings of the National Academy of Sciences of the United States of America, 113(9), E1236–E1245. https://doi.org/10.1073/pnas.1519444113
  • Fleming, N. D., Agadjanian, H., Nassanian, H., Miller, C. W., Orsulic, S., Karlan, B. Y., & Walsh, C. S. (2012). Xeroderma pigmentosum complementation group C single-nucleotide polymorphisms in the nucleotide excision repair pathway correlate with prolonged progression-free survival in advanced ovarian cancer. Cancer, 118(3), 689–697. https://doi.org/10.1002/cncr.26329
  • Fong, Y. W., Inouye, C., Yamaguchi, T., Cattoglio, C., Grubisic, I., & Tjian, R. (2011). A DNA repair complex functions as an Oct4/Sox2 coactivator in embryonic stem cells. Cell, 147(1), 120–131. https://doi.org/10.1016/j.cell.2011.08.038
  • Fousteri, M., & Mullenders, L. H. (2008). Transcription-coupled nucleotide excision repair in mammalian cells: Molecular mechanisms and biological effects. Cell Research, 18(1), 73–84. https://doi.org/10.1038/cr.2008.6
  • Francisco, G., Menezes, P. R., Eluf-Neto, J., & Chammas, R. (2008). XPC polymorphisms play a role in tissue-specific carcinogenesis: A meta-analysis. European Journal of Human Genetics: EJHG, 16(6), 724–734. https://doi.org/10.1038/ejhg.2008.6
  • Friedberg, E. C., Aguilera, A., Gellert, M., Hanawalt, P. C., Hays, J. B., Lehmann, A. R., Lindahl, T., Lowndes, N., Sarasin, A., & Wood, R. D. (2006). DNA repair: From molecular mechanism to human disease. DNA Repair, 5(8), 986–996. https://doi.org/10.1016/j.dnarep.2006.05.005
  • Gillet, L. C., & Scharer, O. D. (2006). Molecular mechanisms of mammalian global genome nucleotide excision repair. Chemical Reviews, 106(2), 253–276. https://doi.org/10.1021/cr040483f
  • Goujon, M., McWilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., & Lopez, R. (2010). A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Research, 38(Web Server issue), W695–W699. https://doi.org/10.1093/nar/gkq313
  • Guex, N., Peitsch, M. C., & Schwede, T. (2009). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis, 30 Suppl 1, S162–S173. https://doi.org/10.1002/elps.200900140
  • Guillem, V. M., Cervantes, F., Martinez, J., Alvarez-Larran, A., Collado, M., Camos, M., Sureda, A., Maffioli, M., Marugan, I., & Hernandez-Boluda, J. C. (2010). XPC genetic polymorphisms correlate with the response to imatinib treatment in patients with chronic phase chronic myeloid leukemia. American Journal of Hematology, 85(7), 482–486. https://doi.org/10.1002/ajh.21726
  • Hanawalt, P. C. (2003). Four decades of DNA repair: From early insights to current perspectives. Biochimie, 85(11), 1043–1052. https://doi.org/10.1016/j.biochi.2003.11.007
  • Hilton, B., Gopal, S., Xu, L., Mazumder, S., Musich, P. R., Cho, B. P., & Zou, Y. (2016). Dissociation dynamics of XPC-RAD23B from damaged DNA is a determining factor of NER efficiency. Plos One, 11(6), e0157784. https://doi.org/10.1371/journal.pone.0157784
  • Ho, J. J., Cattoglio, C., McSwiggen, D. T., Tjian, R., & Fong, Y. W. (2017). Regulation of DNA demethylation by the XPC DNA repair complex in somatic and pluripotent stem cells. Genes & Development, 31(8), 830–844. https://doi.org/10.1101/gad.295741.116
  • Hoogstraten, D., Bergink, S., Ng, J. M. Y., Verbiest, V. H. M., Luijsterburg, M. S., Geverts, B., Raams, A., Dinant, C., Hoeijmakers, J. H. J., Vermeulen, W., & Houtsmuller, A. B. (2008). Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. Journal of Cell Science, 121(Pt 17), 2850–2859. https://doi.org/10.1242/jcs.031708
  • Huang, W. Y., Berndt, S. I., Kang, D., Chatterjee, N., Chanock, S. J., Yeager, M., Welch, R., Bresalier, R. S., Weissfeld, J. L., & Hayes, R. B. (2006). Nucleotide excision repair gene polymorphisms and risk of advanced colorectal adenoma: XPC polymorphisms modify smoking-related risk. Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 15(2), 306–311. https://doi.org/10.1158/1055-9965.EPI-05-0751
  • Jacobelli, S., Soufir, N., Lacapere, J. J., Regnier, S., Bourillon, A., Grandchamp, B., Hétet, G., Pham, D., Palangie, A., Avril, M. F., Dupin, N., Sarasin, A., & Gorin, I. (2008). Xeroderma pigmentosum group C in a French Caucasian patient with multiple melanoma and unusual long-term survival. The British Journal of Dermatology, 159(4), 968–973. https://doi.org/10.1111/j.1365-2133.2008.08791.x
  • Jin, B., Dong, Y., Zhang, X., Wang, H., & Han, B. (2014). Association of XPC polymorphisms and lung cancer risk: A meta-analysis. PloS One, 9(4), e93937. https://doi.org/10.1371/journal.pone.0093937
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Kong, M., Liu, L., Chen, X., Driscoll, K. I., Mao, P., Böhm, S., Kad, N. M., Watkins, S. C., Bernstein, K. A., Wyrick, J. J., Min, J.-H., & Van Houten, B. (2016). Single-molecule imaging reveals that Rad4 employs a dynamic DNA damage recognition process. Molecular Cell, 64(2), 376–387. https://doi.org/10.1016/j.molcel.2016.09.005
  • Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Anarbaev, R. O., Pestryakov, P. E., Sugasawa, K., Min, J. H., & Lavrik, O. I. (2013). Human and yeast DNA damage recognition complexes bind with high affinity DNA structures mimicking in size transcription bubble. Journal of Molecular Recognition: JMR, 26(12), 653–661. https://doi.org/10.1002/jmr.2308
  • Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Pestryakov, P. E., Petruseva, I. O., Sugasawa, K., Chen, X., Min, J. H., & Lavrik, O. I. (2013). Comparative analysis of interaction of human and yeast DNA damage recognition complexes with damaged DNA in nucleotide excision repair. The Journal of Biological Chemistry, 288(15), 10936–10947. https://doi.org/10.1074/jbc.M112.444026
  • Krieger, E., & Vriend, G. (2014). YASARA View – Molecular graphics for all devices – From smartphones to workstations. Bioinformatics (Oxford, England), 30(20), 2981–2982. https://doi.org/10.1093/bioinformatics/btu426
  • Kusakabe, M., Kakumu, E., Kurihara, F., Tsuchida, K., Maeda, T., Tada, H., Kusao, K., Kato, A., Yasuda, T., Matsuda, T., Nakao, M., Yokoi, M., Sakai, W., & Sugasawa, K. (2022). Histone deacetylation regulates nucleotide excision repair through an interaction with the XPC protein. iScience, 25(4), 104040. https://doi.org/10.1016/j.isci.2022.104040
  • Kusakabe, M., Onishi, Y., Tada, H., Kurihara, F., Kusao, K., Furukawa, M., Iwai, S., Yokoi, M., Sakai, W., & Sugasawa, K. (2019). Mechanism and regulation of DNA damage recognition in nucleotide excision repair. Genes and Environment: The Official Journal of the Japanese Environmental Mutagen Society, 41, 2. https://doi.org/10.1186/s41021-019-0119-6
  • Landrum, M. J., Lee, J. M., Benson, M., Brown, G. R., Chao, C., Chitipiralla, S., Gu, B., Hart, J., Hoffman, D., Jang, W., Karapetyan, K., Katz, K., Liu, C., Maddipatla, Z., Malheiro, A., McDaniel, K., Ovetsky, M., Riley, G., Zhou, G., … Maglott, D. R. (2018). ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Research, 46(D1), D1062–D1067. https://doi.org/10.1093/nar/gkx1153
  • Lans, H., Hoeijmakers, J. H. J., Vermeulen, W., & Marteijn, J. A. (2019). The DNA damage response to transcription stress. Nature Reviews. Molecular Cell Biology, 20(12), 766–784. https://doi.org/10.1038/s41580-019-0169-4
  • Laskowski, R. A., Macarthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lawrence, M. S., Stojanov, P., Mermel, C. H., Robinson, J. T., Garraway, L. A., Golub, T. R., Meyerson, M., Gabriel, S. B., Lander, E. S., & Getz, G. (2014). Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 505(7484), 495–501. https://doi.org/10.1038/nature12912
  • Le May, N., Egly, J. M., & Coin, F. (2010). True lies: The double life of the nucleotide excision repair factors in transcription and DNA repair. Journal of Nucleic Acids. 2010, 1–10. https://doi.org/10.4061/2010/616342
  • Le May, N., Mota-Fernandes, D., Velez-Cruz, R., Iltis, I., Biard, D., & Egly, J. M. (2010). NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack. Molecular Cell, 38(1), 54–66. https://doi.org/10.1016/j.molcel.2010.03.004
  • Legerski, R., & Peterson, C. (1992). Expression cloning of a human DNA repair gene involved in xeroderma pigmentosum group C. Nature, 359(6390), 70–73. https://doi.org/10.1038/359070a0
  • Li, L., Bales, E. S., Peterson, C. A., & Legerski, R. J. (1993). Characterization of molecular defects in xeroderma pigmentosum group C. Nature Genetics, 5(4), 413–417. https://doi.org/10.1038/ng1293-413
  • Li, W., & Godzik, A. (2006). Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics (Oxford, England), 22(13), 1658–1659. https://doi.org/10.1093/bioinformatics/btl158
  • Li, C. L., Golebiowski, F. M., Onishi, Y., Samara, N. L., Sugasawa, K., & Yang, W. (2015). Tripartite DNA lesion recognition and verification by XPC, TFIIH, and XPA in nucleotide excision repair. Molecular Cell, 59(6), 1025–1034. https://doi.org/10.1016/j.molcel.2015.08.012
  • Maillard, O., Solyom, S., & Naegeli, H. (2007). An aromatic sensor with aversion to damaged strands confers versatility to DNA repair. PLoS Biology, 5(4), e79. https://doi.org/10.1371/journal.pbio.0050079
  • Malik, S. S., Zia, A., Rashid, S., Mubarik, S., Masood, N., Hussain, M., Yasmin, A., & Bano, R. (2020). XPC as breast cancer susceptibility gene: Evidence from genetic profiling, statistical inferences and protein structural analysis. Breast Cancer (Tokyo, Japan), 27(6), 1168–1176. https://doi.org/10.1007/s12282-020-01121-z
  • Marteijn, J. A., Lans, H., Vermeulen, W., & Hoeijmakers, J. H. (2014). Understanding nucleotide excision repair and its roles in cancer and ageing. Nature Reviews. Molecular Cell Biology, 15(7), 465–481. https://doi.org/10.1038/nrm3822
  • Martin-Morales, L., Rofes, P., Diaz-Rubio, E., Llovet, P., Lorca, V., Bando, I., Perez-Segura, P., de la Hoya, M., Garre, P., Garcia-Barberan, V., & Caldes, T. (2018). Novel genetic mutations detected by multigene panel are associated with hereditary colorectal cancer predisposition. Plos One, 13(9), e0203885. https://doi.org/10.1371/journal.pone.0203885
  • Masutani, C., Sugasawa, K., Yanagisawa, J., Sonoyama, T., Ui, M., Enomoto, T., Takio, K., Tanaka, K., van der Spek, P. J., & Bootsma, D. (1994). Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. The EMBO Journal, 13(8), 1831–1843. https://doi.org/10.1002/j.1460-2075.1994.tb06452.x
  • Matsumoto, S., Cavadini, S., Bunker, R. D., Grand, R. S., Potenza, A., Rabl, J., Yamamoto, J., Schenk, A. D., Schübeler, D., Iwai, S., Sugasawa, K., Kurumizaka, H., & Thomä, N. H. (2019). DNA damage detection in nucleosomes involves DNA register shifting. Nature, 571(7763), 79–84. https://doi.org/10.1038/s41586-019-1259-3
  • Matsumoto, S., Fischer, E. S., Yasuda, T., Dohmae, N., Iwai, S., Mori, T., Nishi, R., Yoshino, K.-I., Sakai, W., Hanaoka, F., Thomä, N. H., & Sugasawa, K. (2015). Functional regulation of the DNA damage-recognition factor DDB2 by ubiquitination and interaction with xeroderma pigmentosum group C protein. Nucleic Acids Research, 43(3), 1700–1713. https://doi.org/10.1093/nar/gkv038
  • Melis, J. P., Luijten, M., Mullenders, L. H., & van Steeg, H. (2011). The role of XPC: Implications in cancer and oxidative DNA damage. Mutation Research, 728(3), 107–117. https://doi.org/10.1016/j.mrrev.2011.07.001
  • Meneses, M., Chavez-Bourgeois, M., Badenas, C., Villablanca, S., Aguilera, P., Bennassar, A., Alos, L., Puig, S., Malvehy, J., & Carrera, C. (2015). Atypical clinical presentation of xeroderma pigmentosum in a patient harboring a novel missense mutation in the XPC gene: The importance of clinical suspicion. Dermatology (Basel, Switzerland), 231(3), 217–221. https://doi.org/10.1159/000433527
  • Min, J. H., & Pavletich, N. P. (2007). Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature, 449(7162), 570–575. https://doi.org/10.1038/nature06155
  • Mu, H., Geacintov, N. E., Min, J.-H., Zhang, Y., & Broyde, S. (2017). Nucleotide excision repair lesion-recognition protein Rad4 captures a pre-flipped partner base in a benzo a pyrene-derived DNA lesion: How structure impacts the binding pathway. Chemical Research in Toxicology, 30(6), 1344–1354. https://doi.org/10.1021/acs.chemrestox.7b00074
  • Nasrallah, N. A., Wiese, B. M., & Sears, C. R. (2022). Xeroderma pigmentosum complementation group C (XPC): Emerging roles in non-dermatologic malignancies. Frontiers in Oncology, 12, 846965. https://doi.org/10.3389/fonc.2022.846965
  • Nishi, R., Okuda, Y., Watanabe, E., Mori, T., Iwai, S., Masutani, C., Sugasawa, K., & Hanaoka, F. (2005). Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Molecular and Cellular Biology, 25(13), 5664–5674. https://doi.org/10.1128/MCB.25.13.5664-5674.2005
  • Nishi, R., Sakai, W., Tone, D., Hanaoka, F., & Sugasawa, K. (2013). Structure-function analysis of the EF-hand protein centrin-2 for its intracellular localization and nucleotide excision repair. Nucleic Acids Research, 41(14), 6917–6929. https://doi.org/10.1093/nar/gkt434
  • Okuda, M., Kinoshita, M., Kakumu, E., Sugasawa, K., & Nishimura, Y. (2015). Structural insight into the mechanism of TFIIH recognition by the acidic string of the nucleotide excision repair factor XPC. Structure (London, England: 1993), 23(10), 1827–1837. https://doi.org/10.1016/j.str.2015.07.009
  • Pandurangan, A. P., Ochoa-Montano, B., Ascher, D. B., & Blundell, T. L. (2017). SDM: A server for predicting effects of mutations on protein stability. Nucleic Acids Research, 45(W1), W229–W235. https://doi.org/10.1093/nar/gkx439
  • Pascucci, B., D'Errico, M., Parlanti, E., Giovannini, S., & Dogliotti, E. (2011). Role of nucleotide excision repair proteins in oxidative DNA damage repair: An updating. Biochemistry. Biokhimiia, 76(1), 4–15. https://doi.org/10.1134/s0006297911010032
  • Paul, D., Mu, H., Tavakoli, A., Dai, Q., Chakraborty, S., He, C., Ansari, A., Broyde, S., & Min, J. H. (2021). Impact of DNA sequences on DNA 'opening’ by the Rad4/XPC nucleotide excision repair complex. DNA Repair, 107, 103194. https://doi.org/10.1016/j.dnarep.2021.103194
  • Paul, D., Mu, H., Tavakoli, A., Dai, Q., Chen, X., Chakraborty, S., He, C., Ansari, A., Broyde, S., & Min, J. H. (2020). Tethering-facilitated DNA 'opening’ and complementary roles of beta-hairpin motifs in the Rad4/XPC DNA damage sensor protein. Nucleic Acids Research, 48(21), 12348–12364. https://doi.org/10.1093/nar/gkaa909
  • Paul, D., Mu, H., Zhao, H., Ouerfelli, O., Jeffrey, P. D., Broyde, S., & Min, J. H. (2019). Structure and mechanism of pyrimidine-pyrimidone (6-4) photoproduct recognition by the Rad4/XPC nucleotide excision repair complex. Nucleic Acids Research, 47(12), 6015–6028. https://doi.org/10.1093/nar/gkz359
  • Petrović, D., & Zlatović, M. (2015). Modeling human serum albumin tertiary structure to teach upper-division chemistry students bioinformatics and homology modeling basics. Journal of Chemical Education, 92(7), 1233–1237. https://doi.org/10.1021/ed500358f
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Popescu, A., Miron, S., Blouquit, Y., Duchambon, P., Christova, P., & Craescu, C. T. (2003). Xeroderma pigmentosum group C protein possesses a high affinity binding site to human centrin 2 and calmodulin. The Journal of Biological Chemistry, 278(41), 40252–40261. https://doi.org/10.1074/jbc.M302546200
  • Pugh, J., Khan, S. G., Tamura, D., Goldstein, A. M., Landi, M. T., DiGiovanna, J. J., & Kraemer, K. H. (2019). Use of Big Data to estimate prevalence of defective DNA repair variants in the US population. JAMA Dermatology, 155(1), 72–78. https://doi.org/10.1001/jamadermatol.2018.4473
  • Puumalainen, M. R., Ruthemann, P., Min, J. H., & Naegeli, H. (2016). Xeroderma pigmentosum group C sensor: Unprecedented recognition strategy and tight spatiotemporal regulation. Cellular and Molecular Life Sciences: CMLS, 73(3), 547–566. https://doi.org/10.1007/s00018-015-2075-z
  • Qiao, B., Ansari, A.-H., Scott, G. B., Sak, S. C., Chambers, P. A., Elliott, F., Teo, M. T. W., Bentley, J., Churchman, M., Hall, J., Taylor, C. F., Bishop, T. D., Knowles, M. A., & Kiltie, A. E. (2011). In vitro functional effects of XPC gene rare variants from bladder cancer patients. Carcinogenesis, 32(4), 516–521. https://doi.org/10.1093/carcin/bgr005
  • Qiu, L., Wang, Z., Shi, X., & Wang, Z. (2008). Associations between XPC polymorphisms and risk of cancers: A meta-analysis. European Journal of Cancer (Oxford, England: 1990), 44(15), 2241–2253. https://doi.org/10.1016/j.ejca.2008.06.024
  • Ramírez-Calvo, M., García-Casado, Z., Fernández-Serra, A., de Juan, I., Palanca, S., Oltra, S., Soto, J. L., Castillejo, A., Barbera, V. M., Juan-Fita, M. J., Segura, Á., Chirivella, I., Sánchez, A. B., Tena, I., Chaparro, C., Salas, D., & López-Guerrero, J. A. (2019). Implementation of massive sequencing in the genetic diagnosis of hereditary cancer syndromes: Diagnostic performance in the Hereditary Cancer Programme of the Valencia Community (FamCan-NGS). Hereditary Cancer in Clinical Practice, 17, 3. https://doi.org/10.1186/s13053-019-0104-x
  • Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., & Rehm, H. L, ACMG Laboratory Quality Assurance Committee (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 17(5), 405–424. https://doi.org/10.1038/gim.2015.30
  • Riedl, T., Hanaoka, F., & Egly, J. M. (2003). The comings and goings of nucleotide excision repair factors on damaged DNA. The EMBO Journal, 22(19), 5293–5303. https://doi.org/10.1093/emboj/cdg489
  • Rivera-Begeman, A., McDaniel, L. D., Schultz, R. A., & Friedberg, E. C. (2007). A novel XPC pathogenic variant detected in archival material from a patient diagnosed with xeroderma pigmentosum: A case report and review of the genetic variants reported in XPC. DNA Repair, 6(1), 100–114. https://doi.org/10.1016/j.dnarep.2006.09.008
  • Rost, B. (1999). Twilight zone of protein sequence alignments. Protein Engineering, 12(2), 85–94. https://doi.org/10.1093/protein/12.2.85
  • Said, R., Bougatef, K., Setti Boubaker, N., Jenni, R., Derouiche, A., Chebil, M., & Ouerhani, S. (2019). Polymorphisms in XPC gene and risk for prostate cancer. Molecular Biology Reports, 46(1), 1117–1125. https://doi.org/10.1007/s11033-018-4572-2
  • Sali, A., & Blundell, T. L. (1993). Comparative protein modeling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815. https://doi.org/10.1006/jmbi.1993.1626
  • Santiago, K. M., Castro, L. P., Neto, J. P. D., de Nóbrega, A. F., Pinto, C. A. L., Ashton-Prolla, P., Pinto E Vairo, F., de Medeiros, P. F. V., Ribeiro, E. M., Ribeiro, B. F. R., do Valle, F. F., Doriqui, M. J. R., Leite, C. H. B., Rocha, R. M., Moura, L. M. S., Munford, V., Galante, P. A. F., Menck, C. F. M., Rogatto, S. R., & Achatz, M. I. (2020). Comprehensive germline mutation analysis and clinical profile in a large cohort of Brazilian xeroderma pigmentosum patients. Journal of the European Academy of Dermatology and Venereology: JEADV, 34(10), 2392–2401. https://doi.org/10.1111/jdv.16405
  • Scharer, O. D. (2013). Nucleotide excision repair in eukaryotes. Cold Spring Harbor Perspectives in Biology, 5(10), a012609. https://doi.org/10.1101/cshperspect.a012609
  • Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., & Serrano, L. (2005). The FoldX web server: An online force field. Nucleic Acids Research, 33(Web Server issue), W382–W388. https://doi.org/10.1093/nar/gki387
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 539. https://doi.org/10.1038/msb.2011.75
  • Strom, S. S., Estey, E., Outschoorn, U. M., & Garcia-Manero, G. (2010). Acute myeloid leukemia outcome: Role of nucleotide excision repair polymorphisms in intermediate risk patients. Leukemia & Lymphoma, 51(4), 598–605. https://doi.org/10.3109/10428190903582804
  • Studer, G., Tauriello, G., Bienert, S., Biasini, M., Johner, N., & Schwede, T. (2021). ProMod3-A versatile homology modelling toolbox. PLoS Computational Biology, 17(1), e1008667. https://doi.org/10.1371/journal.pcbi.1008667
  • Sugasawa, K., Ng, J. M., Masutani, C., Iwai, S., van der Spek, P. J., Eker, A. P., Hanaoka, F., Bootsma, D., & Hoeijmakers, J. H. (1998). Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Molecular Cell, 2(2), 223–232. https://doi.org/10.1016/S1097-2765(00)80132-X
  • Sugasawa, K., Okamoto, T., Shimizu, Y., Masutani, C., Iwai, S., & Hanaoka, F. (2001). A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes & Development, 15(5), 507–521. https://doi.org/10.1101/gad.866301
  • Tavakoli, A., & Min, J. H. (2022). Photochemical modifications for DNA/RNA oligonucleotides. RSC Advances, 12(11), 6484–6507. https://doi.org/10.1039/D1RA05951C
  • Thompson, J. R., Ryan, Z. C., Salisbury, J. L., & Kumar, R. (2006). The structure of the human centrin 2-xeroderma pigmentosum group C protein complex. The Journal of Biological Chemistry, 281(27), 18746–18752. https://doi.org/10.1074/jbc.M513667200
  • Uchida, A., Sugasawa, K., Masutani, C., Dohmae, N., Araki, M., Yokoi, M., Ohkuma, Y., & Hanaoka, F. (2002). The carboxy-terminal domain of the XPC protein plays a crucial role in nucleotide excision repair through interactions with transcription factor IIH. DNA Repair, 1(6), 449–461. https://doi.org/10.1016/S1568-7864(02)00031-9
  • van Eeuwen, T., Shim, Y., Kim, H. J., Zhao, T., Basu, S., Garcia, B. A., Kaplan, C. D., Min, J. H., & Murakami, K. (2021). Cryo-EM structure of TFIIH/Rad4-Rad23-Rad33 in damaged DNA opening in nucleotide excision repair. Nature Communications, 12(1), 3338. https://doi.org/10.1038/s41467-021-23684-x
  • Velmurugu, Y., Chen, X., Slogoff Sevilla, P., Min, J. H., & Ansari, A. (2016). Twist-open mechanism of DNA damage recognition by the Rad4/XPC nucleotide excision repair complex. Proc Natl Acad Sci U S A, 113, E2296–E2305.
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Protein Science, 86, 29–37.
  • Whirl-Carrillo, M., Huddart, R., Gong, L., Sangkuhl, K., Thorn, C. F., Whaley, R., & Klein, T. E. (2021). An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clinical Pharmacology & Therapeutics, 110(3), 563–572. https://doi.org/10.1002/cpt.2350
  • Wood, R. D. (1999). DNA damage recognition during nucleotide excision repair in mammalian cells. Biochimie, 81(1-2), 39–44. https://doi.org/10.1016/s0300-9084(99)80036-4
  • Xie, Z., Liu, S., Zhang, Y., & Wang, Z. (2004). Roles of Rad23 protein in yeast nucleotide excision repair. Nucleic Acids Research, 32(20), 5981–5990. https://doi.org/10.1093/nar/gkh934
  • Xie, C., Zhao, J., Hua, W., Tan, P., Chen, Y., Rui, J., Sun, X., Fan, J., Wei, X., Xu, X., & Yang, X. (2019). Effect of XPC polymorphisms on the response to platinum-based chemotherapy: A meta- analysis. OncoTargets and Therapy, 12, 3839–3848. https://doi.org/10.2147/OTT.S202617
  • Yang, A., Miron, S., Mouawad, L., Duchambon, P., Blouquit, Y., & Craescu, C. T. (2006). Flexibility and plasticity of human centrin 2 binding to the xeroderma pigmentosum group c protein (XPC) from nuclear excision repair. Biochemistry, 45(11), 3653–3663. https://doi.org/10.1021/bi0524868
  • Yasuda, G., Nishi, R., Watanabe, E., Mori, T., Iwai, S., Orioli, D., Stefanini, M., Hanaoka, F., & Sugasawa, K. (2007). In vivo destabilization and functional defects of the xeroderma pigmentosum C protein caused by a pathogenic missense mutation. Molecular and Cellular Biology, 27(19), 6606–6614. https://doi.org/10.1128/MCB.02166-06
  • Yeh, J. I., Levine, A. S., Du, S., Chinte, U., Ghodke, H., Wang, H., Shi, H., Hsieh, C. L., Conway, J. F., Van Houten, B., & Rapić-Otrin, V. (2012). Damaged DNA induced UV-damaged DNA-binding protein (UV-DDB) dimerization and its roles in chromatinized DNA repair. Proceedings of the National Academy of Sciences of the United States of America, 109(41), E2737–E2746. https://doi.org/10.1073/pnas.1110067109
  • Yokoi, M., Masutani, C., Maekawa, T., Sugasawa, K., Ohkuma, Y., & Hanaoka, F. (2000). The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. The Journal of Biological Chemistry, 275(13), 9870–9875. https://doi.org/10.1074/jbc.275.13.9870
  • Zebian, A., Shaito, A., Mazurier, F., Rezvani, H. R., & Zibara, K. (2019). XPC beyond nucleotide excision repair and skin cancers. Mutation Research. Reviews in Mutation Research, 782, 108286. https://doi.org/10.1016/j.mrrev.2019.108286
  • Zhang, J., Bajari, R., Andric, D., Gerthoffert, F., Lepsa, A., Nahal-Bose, H., Stein, L. D., & Ferretti, V. (2019). The International Cancer Genome Consortium data portal. Nature Biotechnology, 37(4), 367–369. https://doi.org/10.1038/s41587-019-0055-9
  • Zhang, E. T., He, Y., Grob, P., Fong, Y. W., Nogales, E., & Tjian, R. (2015). Architecture of the human XPC DNA repair and stem cell coactivator complex. Proceedings of the National Academy of Sciences of the United States of America, 112(48), 14817–14822. https://doi.org/10.1073/pnas.1520104112
  • Zhao, Z., Zhang, A., Zhao, Y., Xiang, J., Yu, D., Liang, Z., Xu, C., Zhang, Q., Li, J., & Duan, P. (2018). The association of polymorphisms in nucleotide excision repair genes with ovarian cancer susceptibility. Bioscience Reports. 38(3), BSR20180114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.