174
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Computational analysis of structural and functional evaluation of the deleterious missense variants in the human CTLA4 gene

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 14179-14196 | Received 18 Nov 2022, Accepted 04 Feb 2023, Published online: 10 Feb 2023

References

  • Abbas, G. (2011). CTLA4 gene variants in autoimmunity and cancer: A comparative review. Iranian Journal of Immunology : IJI, 8(3), 127–149. https://pubmed.ncbi.nlm.nih.gov/21931200
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Abraham, M. J., Van der Spoel, D., Lindahl, E., & Hess, B. (2019). GROMACS user manual version 2019.3. http://www.gromacs.org
  • Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S., & Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248–249. https://doi.org/10.1038/nmeth0410-248
  • Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1), W344–350. https://doi.org/10.1093/nar/gkw408
  • Balcão, V. M., & Vila, M. M. D. C. (2015). Structural and functional stabilization of protein entities: State-of-the-art. Advanced Drug Delivery Reviews, 93, 25–41. https://doi.org/10.1016/j.addr.2014.10.005
  • Bansal, A., Tasnim, S., Gupta, M. D., Mp, G., Batra, V., Kohli, S., Tyagi, S., & Pasha, M. A. Q. (2021). Susceptibility of CTLA-4 -1661A/G polymorphism towards severity of rheumatic heart disease. Indian Heart Journal, 73(4), 511–515. https://doi.org/10.1016/j.ihj.2021.05.002
  • Belkaid, Y., & Rouse, B. T. (2005). Natural regulatory T cells in infectious disease. Nature Immunology, 6(4), 353–360. https://doi.org/10.1038/ni1181
  • Berendsen, H. J. C., Postma, J., P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bouqbis, L., Izaabel, H., Akhayat, O., Pérez-Lezaun, A., Calafell, F., Bertranpetit, J., & Comas, D. (2003). Association of the CTLA4 promoter region (−1661G allele) with type 1 diabetes in the South Moroccan population. Genes and Immunity, 4(2), 132–137. https://doi.org/10.1038/sj.gene.6363933
  • Bowie, J. U., Lüthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science (New York, N.Y.), 253(5016), 164–170. https://doi.org/10.1126/science.1853201
  • Bromberg, Y., & Rost, B. (2007). SNAP: Predict effect of non-synonymous polymorphisms on function. Nucleic Acids Research, 35(11), 3823–3835. https://doi.org/10.1093/nar/gkm238
  • Brunet, J. F., Denizot, F., Luciani, M. F., Roux-Dosseto, M., Suzan, M., Mattei, M. G., & Golstein, P. (1987). A new member of the immunoglobulin superfamily—CTLA-4. Nature, 328(6127), 267–270. https://doi.org/10.1038/328267a0
  • Buckner, J. H. (2010). Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nature Reviews. Immunology, 10(12), 849–859. https://doi.org/10.1038/nri2889
  • Calabrese, R., Capriotti, E., Fariselli, P., Martelli, P. L., & Casadio, R. (2009). Functional annotations improve the predictive score of human disease-related mutations in proteins. Human Mutation, 30(8), 1237–1244. https://doi.org/10.1002/humu.21047
  • Capriotti, E., & Altman, R. B. (2011). Improving the prediction of disease-related variants using protein three-dimensional structure. BMC Bioinformatics, 12(Suppl 4), S3. https://doi.org/10.1186/1471-2105-12-S4-S3
  • Capriotti, E., Calabrese, R., & Casadio, R. (2006). Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics (Oxford, England), 22(22), 2729–2734. https://doi.org/10.1093/bioinformatics/btl423
  • Capriotti, E., Fariselli, P., Calabrese, R., & Casadio, R. (2005). Predicting protein stability changes from sequences using support vector machines. Bioinformatics (Oxford, England), 21, ii54–ii58. https://doi.org/10.1093/bioinformatics/bti1109
  • Çelmeli, F., Türkkahraman, D., Özel, D., Akçurin, S., & Yegin, O. (2013). CTLA-4 (+49A/G) polymorphism and type-1 diabetes in Turkish children. Journal of Clinical Research in Pediatric Endocrinology, 5(1), 40–43. https://doi.org/10.4274/Jcrpe.879
  • Chasman, D., & Adams, R. M. (2001). Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: Structure-based assessment of amino acid variation. Journal of Molecular Biology, 307(2), 683–706. https://doi.org/10.1006/jmbi.2001.4510
  • Chen, C.-W., Lin, J., & Chu, Y.-W. (2013). iStable: Off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinformatics, 14(Suppl 2), S5. https://doi.org/10.1186/1471-2105-14-S2-S5
  • Chen, C.-W., Lin, M.-H., Liao, C.-C., Chang, H.-P., & Chu, Y.-W. (2020). iStable 2.0: Predicting protein thermal stability changes by integrating various characteristic modules. Computational and Structural Biotechnology Journal, 18, 622–630. https://doi.org/10.1016/j.csbj.2020.02.021
  • Chen, M., Chang, Y., Tang, F., Xie, Q.-H., Li, J., Yang, H., He, X.-X., & Lin, J.-S. (2014). Influence of cytotoxic T lymphocyte-associated antigen 4 polymorphisms on the outcomes of hepatitis B virus infection. Molecular Medicine Reports, 9(2), 645–652. https://doi.org/10.3892/mmr.2013.1825
  • Chen, Y., Lu, H., Zhang, N., Zhu, Z., Wang, S., & Li, M. (2020). PremPS: Predicting the impact of missense mutations on protein stability. PLoS Computational Biology, 16(12), e1008543. https://doi.org/10.1371/journal.pcbi.1008543
  • Cheng, J., Randall, A., & Baldi, P. (2005). Prediction of protein stability changes for single-site mutations using support vector machines. Proteins: Structure, Function, and Bioinformatics, 62(4), 1125–1132. https://doi.org/10.1002/prot.20810
  • Chistiakov, D. A., & Turakulov, R. I. (2003). CTLA-4 and its role in autoimmune thyroid disease. Journal of Molecular Endocrinology, 31(1), 21–36. https://doi.org/10.1677/jme.0.0310021
  • Choi, Y., & Chan, A. P. (2015). PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, 31(16), 2745–2747. https://doi.org/10.1093/bioinformatics/btv195
  • Choi, Y., Sims, G. E., Murphy, S., Miller, J. R., & Chan, A. P. (2012). Predicting the functional effect of amino acid substitutions and indels. PloS One, 7(10), e46688. https://doi.org/10.1371/journal.pone.0046688
  • Collins, F. S., Brooks, L. D., & Chakravarti, A. (1998). A DNA polymorphism discovery resource for research on human genetic variation. Genome Research, 8(12), 1229–1231. https://doi.org/10.1101/gr.8.12.1229
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science : A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Dariavach, P., Mattéi, M. G., Golstein, P., & Lefranc, M. P. (1988). Human Ig superfamily CTLA-4 gene: Chromosomal localization and identity of protein sequence between murine and human CTLA-4 cytoplasmic domains. European Journal of Immunology, 18(12), 1901–1905. https://doi.org/10.1002/eji.1830181206
  • Dieu-Nosjean, M.-C., & Caux, C. (2019). La biologie des cibles PD-1 et CTLA-4 et la question des biomarqueurs. médecine/sciences, 35(12), 957–965. https://doi.org/10.1051/medsci/2019192
  • Ebrahim, E., Teklu, T., Tajebe, F., Wondmagegn, T., Akelew, Y., & Fiseha, M. (2022). Association of cytotoxic T-lymphocyte antigen-4 gene polymorphism with type 1 diabetes mellitus: In silico analysis of biological features of CTLA-4 protein on Ethiopian population. Diabetes, Metabolic Syndrome and Obesity : Targets and Therapy, 15, 2733–2751. https://doi.org/10.2147/DMSO.S375023
  • Friedline, R. H., Brown, D. S., Nguyen, H., Kornfeld, H., Lee, J., Zhang, Y., Appleby, M., Der, S. D., Kang, J., & Chambers, C. A. (2009). CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. The Journal of Experimental Medicine, 206(2), 421–434. https://doi.org/10.1084/jem.20081811
  • Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor-Shental, D., Martz, E., & Ben-Tal, N. (2003). ConSurf: Identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics (Oxford, England), 19(1), 163–164. https://doi.org/10.1093/bioinformatics/19.1.163
  • Glaser, F., Rosenberg, Y., Kessel, A., Pupko, T., & Ben-Tal, N. (2005). The ConSurf-HSSP database: The mapping of evolutionary conservation among homologs onto PDB structures. Proteins, 58(3), 610–617. https://doi.org/10.1002/prot.20305
  • Goske, M., Ramachander, V. R. V., Komaravalli, P. L., Rahman, P. F., Rao, C., & Jahan, P. (2017). CTLA-4 genetic variants (rs11571317 and rs3087243): Role in susceptibility and progression of breast cancer. World Journal of Oncology, 8(5), 162–170. https://doi.org/10.4021/wjon.v8i5.1046
  • Harper, K., Balzano, C., Rouvier, E., Mattéi, M. G., Luciani, M. F., & Golstein, P. (1991). CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location. Journal of Immunology (Baltimore, Md. : 1950), 147(3), 1037–1044.
  • Hasan, G. A., & Altamemi, I. A. (2022). CTLA-4 polymorphism along with proinflammatory cytokines in autoimmune thyroiditis disease. Wiadomości Lekarskie, 75(3), 577–583. https://doi.org/10.36740/WLek202203103
  • Hosseini, A., Gharibi, T., Marofi, F., Babaloo, Z., & Baradaran, B. (2020). CTLA-4: From mechanism to autoimmune therapy. International Immunopharmacology, 80, 106221. https://doi.org/10.1016/j.intimp.2020.106221
  • Hu, S., Pu, D., Xia, X., Guo, B., & Zhang, C. (2020). CTLA-4 rs5742909 polymorphism and cervical cancer risk: A meta-analysis. Medicine, 99(11), e19433. https://doi.org/10.1097/MD.0000000000019433
  • Huang, F., He, Q., Jiao, X., Zhang, H., & Chang, Q. (2020). Meta-analysis of CTLA-4 + 49 gene polymorphism and susceptibility to graves’ disease. Critical Reviews in Eukaryotic Gene Expression, 30(5), 377–390. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2020034872
  • Huang, J., & MacKerell, A. D., Jr. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Jaiswal, P. K., Singh, V., & Mittal, R. D. (2014). Cytotoxic T lymphocyte antigen 4 (CTLA4) gene polymorphism with bladder cancer risk in North Indian population. Molecular Biology Reports, 41(2), 799–807. https://doi.org/10.1007/s11033-013-2919-2
  • June, C. H., Bluestone, J. A., Nadler, L. M., & Thompson, C. B. (1994). The B7 and CD28 receptor families. Immunology Today, 15(7), 321–331. https://doi.org/10.1016/0167-5699(94)90080-9
  • June, C. H., Ledbetter, J. A., Linsley, P. S., & Thompson, C. B. (1990). Role of the CD28 receptor in T-cell activation. Immunology Today, 11(6), 211–216. https://doi.org/10.1016/0167-5699(90)90085-n
  • Karabon, L., Kosmaczewska, A., Bilinska, M., Pawlak, E., Ciszak, L., Jedynak, A., Jonkisz, A., Noga, L., Pokryszko-Dragan, A., Koszewicz, M., & Frydecka, I. (2009). The CTLA-4 gene polymorphisms are associated with CTLA-4 protein expression levels in multiple sclerosis patients and with susceptibility to disease. Immunology, 128(1 Suppl), e787–e796. https://doi.org/10.1111/j.1365-2567.2009.03083.x
  • Karandikar, N. J., Vanderlugt, C. L., Walunas, T. L., Miller, S. D., & Bluestone, J. A. (1996). CTLA-4: A negative regulator of autoimmune disease. The Journal of Experimental Medicine, 184(2), 783–788. https://doi.org/10.1084/jem.184.2.783
  • Katta, V., Chait, B. T., & Carr, S. (1991). Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Communications in Mass Spectrometry : RCM, 5(4), 214–217. https://doi.org/10.1002/rcm.1290050415
  • Kaykhaei, M., Moghadam, H., Dabiri, S., Salimi, S., Jahantigh, D., Tamandani, D. M. K., Rasouli, A., & Narooie-Nejad, M. (2020). Association of CTLA4 (rs4553808) and PTPN22 (rs2476601) gene polymorphisms with Hashimoto’s thyroiditis disease: A case-control study and an In-silico analysis. Meta Gene, 24, 100693. https://doi.org/10.1016/j.mgene.2020.100693
  • Kearney, E. R., Walunas, T. L., Karr, R. W., Morton, P. A., Loh, D. Y., Bluestone, J. A., & Jenkins, M. K. (1995). Antigen-dependent clonal expansion of a trace population of antigen-specific CD4+ T cells in vivo is dependent on CD28 costimulation and inhibited by CTLA-4. The Journal of Immunology, 155(3), 1032–1036. https://doi.org/10.4049/jimmunol.155.3.1032
  • Kim, J. M., Rasmussen, J. P., & Rudensky, A. Y. (2007). Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nature Immunology, 8(2), 191–197. https://doi.org/10.1038/ni1428
  • Krummel, M. F., & Allison, J. P. (1995). CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. Journal of Experimental Medicine, 182(2), 459–465. https://doi.org/10.1084/jem.182.2.459
  • Krummel, M. F., Sullivan, T. J., & Allison, J. P. (1996). Superantigen responses and co-stimulation: CD28 and CTLA-4 have opposing effects on T cell expansion in vitro and in vivo. International Immunology, 8(4), 519–523. https://doi.org/10.1093/intimm/8.4.519
  • Kucukkal, T. G., Petukh, M., Li, L., & Alexov, E. (2015). Structural and physico-chemical effects of disease and non-disease nsSNPs on proteins. Current Opinion in Structural Biology, 32, 18–24. https://doi.org/10.1016/j.sbi.2015.01.003
  • Lander, E. S. (1996). The new genomics: Global views of biology. Science (New York, N.Y.), 274(5287), 536–539. https://doi.org/10.1126/science.274.5287.536
  • Lee, K.-M., Chuang, E., Griffin, M., Khattri, R., Hong, D. K., Zhang, W., Straus, D., Samelson, L. E., Thompson, C. B., & Bluestone, J. A. (1998). Molecular basis of T cell inactivation by CTLA-4. Science (New York, N.Y.), 282(5397), 2263–2266. https://doi.org/10.1126/science.282.5397.2263
  • Leung, H. T., Bradshaw, J., Cleaveland, J. S., & Linsley, P. S. (1995). Cytotoxic T lymphocyte-associated molecule-4, a high-avidity receptor for CD80 and CD86, contains an intracellular localization motif in its cytoplasmic tail. The Journal of Biological Chemistry, 270(42), 25107–25114. https://doi.org/10.1074/jbc.270.42.25107
  • Li, B., Krishnan, V., Mort, M., Xin, F., Kamati, K., Cooper, D., Mooney, S., & Radivojac, P. (2009). Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics (Oxford, England), 25(21), 2744–2750. https://doi.org/10.1093/bioinformatics/btp528
  • Lindsten, T., Lee, K. P., Harris, E. S., Petryniak, B., Craighead, N., Reynolds, P. J., Lombard, D. B., Freeman, G. J., Nadler, L. M., & Gray, G. S. (1993). Characterization of CTLA-4 structure and expression on human T cells. The Journal of Immunology, 151(7), 3489–3499. https://doi.org/10.4049/jimmunol.151.7.3489
  • Linsley, P. S., Greene, J. L., Brady, W., Bajorath, J., Ledbetter, J. A., & Peach, R. (1994). Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity, 1(9), 793–801. https://doi.org/10.1016/s1074-7613(94)80021-9
  • Malek, T. R., Yu, A., Vincek, V., Scibelli, P., & Kong, L. (2002). CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the Nonredundant Function of IL-2. Immunity, 17(2), 167–178. https://doi.org/10.1016/s1074-7613(02)00367-9
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Mayrose, I., Graur, D., Ben-Tal, N., & Pupko, T. (2004). Comparison of site-specific rate-inference methods for protein sequences: Empirical Bayesian methods are superior. Molecular Biology and Evolution, 21(9), 1781–1791. https://doi.org/10.1093/molbev/msh194
  • Metzler, W. J., Bajorath, J., Fenderson, W., Shaw, S. Y., Constantine, K. L., Naemura, J., Leytze, G., Peach, R. J., Lavoie, T. B., Mueller, L., & Linsley, P. S. (1997). Solution structure of human CTLA-4 and delineation of a CD80/CD86 binding site conserved in CD28. Nature Structural Biology, 4(7), 527–531. https://doi.org/10.1038/nsb0797-527
  • Mi, H., Muruganujan, A., & Thomas, P. D. (2013). PANTHER in 2013: Modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Research, 41(Database issue), D377–386. https://doi.org/10.1093/nar/gks1118
  • Ng, P. C., & Henikoff, S. (2001). Predicting Deleterious Amino Acid Substitutions. Genome Research, 11(5), 863–874. https://doi.org/10.1101/gr.176601
  • Ng, P. C., & Henikoff, S. (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research, 31(13), 3812–3814. https://doi.org/10.1093/nar/gkg509
  • Nisticò, L., Buzzetti, R., Pritchard, L. E., Van der Auwera, B., Giovannini, C., Bosi, E., Larrad, M. T., Rios, M. S., Chow, C. C., Cockram, C. S., Jacobs, K., Mijovic, C., Bain, S. C., Barnett, A. H., Vandewalle, C. L., Schuit, F., Gorus, F. K., Tosi, R., Pozzilli, P., & Todd, J. A. (1996). The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Human Molecular Genetics, 5(7), 1075–1080. https://doi.org/10.1093/hmg/5.7.1075
  • Olechnovič, K., & Venclovas, Č. (2017). VoroMQA: Assessment of protein structure quality using interatomic contact areas. Proteins, 85(6), 1131–1145. https://doi.org/10.1002/prot.25278
  • Pace, C. N., Fu, H., Fryar, K. L., Landua, J., Trevino, S. R., Schell, D., Thurlkill, R. L., Imura, S., Scholtz, J. M., Gajiwala, K., Sevcik, J., Urbanikova, L., Myers, J. K., Takano, K., Hebert, E. J., Shirley, B. A., & Grimsley, G. R. (2014). Contribution of hydrogen bonds to protein stability. Protein Science : A Publication of the Protein Society, 23(5), 652–661. https://doi.org/10.1002/pro.2449
  • Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews. Cancer, 12(4), 252–264. https://doi.org/10.1038/nrc3239
  • Pejaver, V., Urresti, J., Lugo-Martinez, J., Pagel, K. A., Lin, G. N., Nam, H.-J., Mort, M., Cooper, D. N., Sebat, J., Iakoucheva, L. M., Mooney, S. D., & Radivojac, P. (2020). Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nature Communications, 11(1), 1–13. https://doi.org/10.1038/s41467-020-19669-x
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Petukh, M., Kucukkal, T. G., & Alexov, E. (2015). On human disease-causing amino acid variants: Statistical study of sequence and structural patterns. Human Mutation, 36(5), 524–534. https://doi.org/10.1002/humu.22770
  • Quezada, S. A., Peggs, K. S., Curran, M. A., & Allison, J. P. (2006). CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. The Journal of Clinical Investigation, 116(7), 1935–1945. https://doi.org/10.1172/JCI27745
  • Qureshi, O. S., Zheng, Y., Nakamura, K., Attridge, K., Manzotti, C., Schmidt, E. M., Baker, J., Jeffery, L. E., Kaur, S., Briggs, Z., Hou, T. Z., Futter, C. E., Anderson, G., Walker, L. S. K., & Sansom, D. M. (2011). Trans-endocytosis of CD80 and CD86: A molecular basis for the cell extrinsic function of CTLA-4. Science (New York, N.Y.), 332(6029), 600–603. https://doi.org/10.1126/science.1202947
  • Ramagopal, U. A., Liu, W., Garrett-Thomson, S. C., Bonanno, J. B., Yan, Q., Srinivasan, M., Wong, S. C., Bell, A., Mankikar, S., Rangan, V. S., Deshpande, S., Korman, A. J., & Almo, S. C. (2017). Structural basis for cancer immunotherapy by the first-in-class checkpoint inhibitor ipilimumab. Proceedings of the National Academy of Sciences of the United States of America, 114(21), E4223–E4232. https://doi.org/10.1073/pnas.1617941114
  • Ramensky, V., Bork, P., & Sunyaev, S. (2002). Human non-synonymous SNPs: Server and survey. Nucleic Acids Research, 30(17), 3894–3900. https://doi.org/10.1093/nar/gkf493
  • Read, S., Malmström, V., & Powrie, F. (2000). Cytotoxic T lymphocyte–associated antigen 4 plays an essential role in the function of Cd25 + Cd4+ regulatory cells that control intestinal inflammation. The Journal of Experimental Medicine, 192(2), 295–302. https://doi.org/10.1084/jem.192.2.295
  • Reva, B., Antipin, Y., & Sander, C. (2007). Determinants of protein function revealed by combinatorial entropy optimization. Genome Biology, 8(11), R232. https://doi.org/10.1186/gb-2007-8-11-r232
  • Reva, B., Antipin, Y., & Sander, C. (2011). Predicting the functional impact of protein mutations: Application to cancer genomics. Nucleic Acids Research, 39(17), e118. https://doi.org/10.1093/nar/gkr407
  • Rudd, C. E. (2008). The reverse stop-signal model for CTLA4 function. Nature Reviews. Immunology, 8(2), 153–160. https://doi.org/10.1038/nri2253
  • Schrödinger. (2021). The PyMOL Molecular Graphics System, Version 2.5.2 Schrödinger, LLC.
  • Schubert, D., Bode, C., Kenefeck, R., Hou, T. Z., Wing, J. B., Kennedy, A., Bulashevska, A., Petersen, B.-S., Schäffer, A. A., Grüning, B. A., Unger, S., Frede, N., Baumann, U., Witte, T., Schmidt, R. E., Dueckers, G., Niehues, T., Seneviratne, S., Kanariou, M., … Grimbacher, B. (2014). Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nature Medicine, 20(12), 1410–1416. https://doi.org/10.1038/nm.3746
  • Seidel, J. A., Otsuka, A., & Kabashima, K. (2018). Anti-PD-1 and anti-CTLA-4 therapies in cancer: Mechanisms of action, efficacy, and limitations. Frontiers in Oncology, 8, 86. https://doi.org/10.3389/fonc.2018.00086
  • Sharpe, A. H., & Freeman, G. J. (2002). The B7-CD28 superfamily. Nature Reviews. Immunology, 2(2), 116–126. https://doi.org/10.1038/nri727
  • Shihab, H. A., Gough, J., Cooper, D. N., Stenson, P. D., Barker, G. L. A., Edwards, K. J., Day, I., N., M., & Gaunt, T. R. (2013). Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Human Mutation, 34(1), 57–65. https://doi.org/10.1002/humu.22225
  • Sippl, M. J. (1993). Recognition of errors in three-dimensional structures of proteins. Proteins: Structure, Function, and Genetics, 17(4), 355–362. https://doi.org/10.1002/prot.340170404
  • Siri, A., Boysson, H. d., & Boursier, G. (2012). Actualité sur les lymphocytes T régulateurs CD4+. médecine/sciences, 28(6-7), 646–647), Article 6–7. ( https://doi.org/10.1051/medsci/2012286019
  • Takahashi, T., Tagami, T., Yamazaki, S., Uede, T., Shimizu, J., Sakaguchi, N., Mak, T. W., & Sakaguchi, S. (2000). Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. The Journal of Experimental Medicine, 192(2), 303–310. https://doi.org/10.1084/jem.192.2.303
  • Tang, H., & Thomas, P. D. (2016). PANTHER-PSEP: Predicting disease-causing genetic variants using position-specific evolutionary preservation. Bioinformatics (Oxford, England), 32(14), 2230–2232. https://doi.org/10.1093/bioinformatics/btw222
  • Tanhapour, M., Vaisi-Raygani, A., Khazaei, M., Rahimi, Z., Pourmotabbed, T., Tanhapour, M., Vaisi-Raygani, A., Khazaei, M., Rahimi, Z., & Pourmotabbed, T. (2017). Cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) polymorphism, cancer, and autoimmune diseases. AIMS Medical Science, 4(4), 395–412. https://doi.org/10.3934/medsci.2017.4.395
  • Teft, W. A., Kirchhof, M. G., & Madrenas, J. (2006). A molecular perspective of CTLA-4 function. Annual Review of Immunology, 24, 65–97. https://doi.org/10.1146/annurev.immunol.24.021605.090535
  • Thio, C. L., Mosbruger, T. L., Kaslow, R. A., Karp, C. L., Strathdee, S. A., Vlahov, D., O'Brien, S. J., Astemborski, J., & Thomas, D. L. (2004). Cytotoxic T-lymphocyte antigen 4 gene and recovery from hepatitis B virus infection. Journal of Virology, 78(20), 11258–11262. https://doi.org/10.1128/JVI.78.20.11258-11262.2004
  • Tivol, E. A., Borriello, F., Schweitzer, A. N., Lynch, W. P., Bluestone, J. A., & Sharpe, A. H. (1995). Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity, 3(5), 541–547. https://doi.org/10.1016/1074-7613(95)90125-6
  • Valk, E., Leung, R., Kang, H., Kaneko, K., Rudd, C. E., & Schneider, H. (2006). T cell receptor-interacting molecule acts as a chaperone to modulate surface expression of the CTLA-4 coreceptor. Immunity, 25(5), 807–821. https://doi.org/10.1016/j.immuni.2006.08.024
  • Van Coillie, S., Wiernicki, B., & Xu, J. (2020). Molecular and cellular functions of CTLA-4. Advances in Experimental Medicine and Biology, 1248, 7–32. https://doi.org/10.1007/978-981-15-3266-5_2
  • Walker, L. S. K. (2013). Treg and CTLA-4: Two intertwining pathways to immune tolerance. Journal of Autoimmunity, 45(100), 49–57. https://doi.org/10.1016/j.jaut.2013.06.006
  • Walker, L. S. K., & Sansom, D. M. (2011). The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nature Reviews. Immunology, 11(12), 852–863. https://doi.org/10.1038/nri3108
  • Walunas, T. L., Bakker, C. Y., & Bluestone, J. A. (1996). CTLA-4 ligation blocks CD28-dependent T cell activation. The Journal of Experimental Medicine, 183(6), 2541–2550. https://doi.org/10.1084/jem.183.6.2541
  • Walunas, T. L., Lenschow, D. J., Bakker, C. Y., Linsley, P. S., Freeman, G. J., Green, J. M., Thompson, C. B., & Bluestone, J. A. (1994). CTLA-4 can function as a negative regulator of T cell activation. Immunity, 1(5), 405–413. https://doi.org/10.1016/1074-7613(94)90071-X
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35, W407–W410. https://doi.org/10.1093/nar/gkm290
  • Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all-atom structure validation. Protein Science : A Publication of the Protein Society, 27(1), 293–315. https://doi.org/10.1002/pro.3330
  • Wing, K., Yamaguchi, T., & Sakaguchi, S. (2011). Cell-autonomous and -non-autonomous roles of CTLA-4 in immune regulation. Trends in Immunology, 32(9), 428–433. https://doi.org/10.1016/j.it.2011.06.002
  • Wu, Y., Guo, Y., Huang, A., Zheng, P., & Liu, Y. (1997). CTLA-4-B7 interaction is sufficient to costimulate T cell clonal expansion. The Journal of Experimental Medicine, 185(7), 1327–1335. https://doi.org/10.1084/jem.185.7.1327
  • Yin, S., Ding, F., & Dokholyan, N. V. (2007a). Eris: An automated estimator of protein stability. Nature Methods, 4(6), 466–467. https://doi.org/10.1038/nmeth0607-466
  • Yin, S., Ding, F., & Dokholyan, N. V. (2007b). Modeling backbone flexibility improves protein stability estimation. Structure (London, England : 1993), 15(12), 1567–1576. https://doi.org/10.1016/j.str.2007.09.024
  • Yu, C., Sonnen, A. F.-P., George, R., Dessailly, B. H., Stagg, L. J., Evans, E. J., Orengo, C. A., Stuart, D. I., Ladbury, J. E., Ikemizu, S., Gilbert, R., J., C., & Davis, S. J. (2011). Rigid-body ligand recognition drives cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor triggering. The Journal of Biological Chemistry, 286(8), 6685–6696. https://doi.org/10.1074/jbc.M110.182394
  • Zhang, X., Schwartz, J.-C D., Almo, S. C., & Nathenson, S. G. (2002). Expression, refolding, purification, molecular characterization, crystallization, and preliminary X-ray analysis of the receptor binding domain of human B7-2. Protein Expression and Purification, 25(1), 105–113. https://doi.org/10.1006/prep.2002.1616

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.