351
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Bioinformatics and cheminformatics approaches to identify pathways, molecular mechanisms and drug substances related to genetic basis of cervical cancer

, ORCID Icon &
Pages 14232-14247 | Received 17 Oct 2022, Accepted 07 Feb 2023, Published online: 28 Feb 2023

References

  • Akash, S., Kumer, A., Chandro, A., Chakma, U., & Matin, M. M. (2023). Quantum calculation, docking, ADMET and molecular dynamics of ketal and non-ketal forms of d-glucofuranose against bacteria, black & white fungus, and triple-negative breast cancer. Bioint. Res. Appl. Chem., 13, 374.
  • An, X., Xu, F., Luo, R., Zheng, Q., bin Lu, J., Yang, Y., Qin, T., Yuan, Z., Shi, Y., Jiang, W., & Wang, S. (2018). The prognostic significance of topoisomerase ii alpha protein in early stage luminal breast cancer. BMC Cancer, 18, 331. https://doi.org/10.1186/s12885-018-4170-7
  • Banerjee, P., Eckert, A., Schrey, A. K., & Preissner, R. (2018). Protox-ii: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257-63.
  • Banuelos˜-Villegas, E. G., Perez’-yPerez, M. F., & Alvarez-Salas, L. M. (2021). Cervical cancer, papillomavirus, and miRNA dysfunction. Frontiers in Molecular Biosciences, 8, 758337. https://doi.org/10.3389/fmolb.2021.758337
  • Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 29(4), 1165–1188. https://doi.org/10.1214/aos/1013699998
  • Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D., & Zardecki, C. (2002). The protein data bank. Acta Crystallographica Section D, Biological Crystallography, 58(Pt 6 No 1), 899–907. https://doi.org/10.1107/s0907444902003451
  • Bhatla, N., Aoki, D., Sharma, D. N., & Sankaranarayanan, R. (2021). Cancer of the cervix uteri: 2021 update. International Journal of Gynecology & Obstetrics, 155, 28–44.
  • Branca, M., Ciotti, M., Giorgi, C., Santini, D., Bonito, L. D., Costa, S., Benedetto, A., Bonifacio, D., Bonito, P. D., Paba, P., Accardi, L., Syrjanen, S. M., Favalli, C., & Syrjanen, K. J. (2007). Up-regulation of proliferating cell nuclear antigen (pcna) is closely associated with high-risk human papillomavirus (HPV) and progression of cervical intraepithelial neoplasia (cin), but does not predict disease outcome in cervical cancer. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 130(2), 223–231.
  • Canfell, K., Kim, J. J., Brisson, M., Keane, A., Simms, K. T., Caruana, M., Burger, E. A., Martin, D., Nguyen, D. T., Benard’, E., et al. (2020). Mortality impact of achieving who cervical cancer elimination targets: A comparative modelling analysis in 78 low-income and lower-middle-income countries. The Lancet, 395(10224), 591–603.
  • Caplan, M. (2014). Transcription factors. Reference module in biomedical sciences. Elsevier. https://www.sciencedirect.com/science/article/pii/B9780128012383054660
  • Casey, D., Demko, S., Sinha, A. K., Mishra-Kalyani, P. S., Shen, Y. L., Khasar, S. G., Goheer, M. A., Helms, W. S., Pan, L., Xu, Y., Fan, J., Leong, R., Liu, J., Yang, Y., Windsor, K., Ou, M.-Y., Stephens, O., Oh, B., Reaman, G., … Singh, H. (2021). Fda approval summary: Selumetinib for plexiform neurofibroma. Clinical Cancer Research, 27, 4142–4146.
  • Causin, R. L., Freitas, A. J. A., Filho, C. M. T. H., dos Reis, R., Reis, R. M., & Marques, M. M. C. (2021). A systematic review of microRNAs involved in cervical cancer progression. Cells, 10, 668. https://doi.org/10.3390/cells10030668
  • Chen, D., Enroth, S., Ivansson, E., & Gyllensten, U. (2014). Pathway analysis of cervical cancer genome-wide association study highlights the MHC region and pathways involved in response to infection. Human Molecular Genetics, 23 22, 6047–6060.
  • Chen, N., Szentirmay, M. N., Pawar, S. A., Sirito, M., Wang, J. C., Wang, Z., Zhai, Q., Yang, H., Peehl, D. M., Ware, J. L., & Sawadogo, M. (2006). Tumor-suppression function of transcription factor usf2 in prostate carcinogenesis. Oncogene, 25, 579–587.
  • Chen, A., Zhong, L., & Lv, J. (2019). Foxl1 overexpression is associated with poor outcome in patients with glioma. Oncology Letters, 18, 751–757.
  • Chi, T. F., Khoder-Agha, F., Mennerich, D., Kellokumpu, S., Miinalainen, I., Kietzmann, T., & Dimova, E. Y. (2020). Loss of usf2 promotes proliferation, migration and mitophagy in a redox-dependent manner. Redox Biology, 37, 101750. https://doi.org/10.1016/j.redox.2020.101750
  • Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., & Lin, C. Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8(4), S11. https://doi.org/10.1186/1752-0509-8-S4-S11
  • Choo, K. B., Huang, C. J., Chen, C. M., Han, C. P., & Au, L. C. (1995). Jun-b oncogene aberrations in cervical cancer cell lines. Cancer Letters, 93, 249–253.
  • Ciombor, K. K., & Bekaii-Saab, T. S. (2015). Selumetinib for the treatment of cancer. Expert Opinion on Investigational Drugs, 24, 111–123.
  • Daina, A., Michielin, O., & Zoete, V. (2017). Swissadme: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717.
  • den Boon, J. A., Pyeon, D., Wang, S. S., Horswill, M., Schiffman, M., Sherman, M., Zuna, R. E., Wang, Z., Hewitt, S. M., Pearson, R., Schott, M., Chung, L., He, Q., Lambert, P., Walker, J., Newton, M. A., Wentzensen, N., & Ahlquist, P. (2015). Molecular transitions from papillomavirus infection to cervical precancer and cancer: Role of stromal estrogen receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 112(25), E3255–E3264. https://doi.org/10.1073/pnas.1509322112
  • Di Fiore, R., Suleiman, S., Drago-Ferrante, R., Subbannayya, Y., Pentimalli, F., Giordano, A., & Calleja-Agius, J. (2022). Cancer stem cells and their possible implications in cervical cancer: A short review. International Journal of Molecular Sciences, 23(9), 5167.
  • Dong, R. F., Zhuang, Y., Wang, Y., Yu Zhang, Z., Xu, X. Z., Rong Mao, Y., & Jin Yu, J. (2021). Tumor suppressor mir-192-5p targets trpm7 and inhibits proliferation and invasion in cervical cancer. The Kaohsiung Journal of Medical Sciences, 37, 699– 708.
  • Doorbar, J., Quint, W., Banks, L., Bravo, I. G., Stoler, M., Broker, T. R., & Stanley, M. A. (2012). The biology and life-cycle of human papillomaviruses. Vaccine, 30, F55–F70.
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). Autodock vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61, 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Fei Pei, Y., Yin, X., & Qiang Liu, X. (2018). Top2a induces malignant character of pancreatic cancer through activating β-catenin signaling pathway. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1864, 197–207.
  • Fei, L., & Xu, H. (2018). Role of mcm2–7 protein phosphorylation in human cancer cells. Cell & Bioscience, 8, 43. https://doi.org/10.1186/s13578-018-0242-2
  • Filho, S. A., Nuovo, G. J., da Cunha, C. B., de Oliveira Ramos Pereira, L., Oliveira-Silva, M., Russomano, F. B., Pires, A., & Nicol, A. F. (2014). Correlation of mcm2 detection with stage and virology of cervical cancer. The International Journal of Biological Markers, 29, 363– 371.
  • Fornes, O., Castro-Mondragon, J. A., Khan, A., van der Lee, R., Zhang, X., Richmond, P. A., Modi, B. P., Correard, S., Gheorghe, M., Baranašić, D., Santana-Garcia, W., Tan, G., Chèneby, J., Ballester, B., Parcy, F., Sandelin, A., Lenhard, B., Wasserman, W. W., & Mathelier, A. (2020). JASPAR 2020: Update of the open-access database of transcription factor binding profiles. Nucleic Acids Research, 48(D1), D87–D92. https://doi.org/10.1093/nar/gkz1001
  • Gupta, S., & Gupta, M. K. (2017). Possible role of nanocarriers in drug delivery against cervical cancer. Nano Reviews & Experiments, 8(1), 1335567.
  • He, Z., Wang, X., Yang, Z., Jiang, Y., Li, L., Wang, X., Song, Z., Wang, X., Wan, J., Jiang, S., Zhang, N., & Cui, R. (2021). Expression and prognosis of cdc45 in cervical cancer based on the geo database. PeerJ, 9, e12114. https://doi.org/10.7717/peerj.12114
  • Henderson, Y. C., Chen, Y., Frederick, M. J., Lai, S. Y., & Clayman, G. L. (2010). Mek inhibitor pd0325901 significantly reduces the growth of papillary thyroid carcinoma cells in vitro and in vivo. Molecular Cancer Therapeutics, 9, 1968–1976.
  • Hu, X., Schwarz, J. K., Lewis, J. S., Huettner, P. C., Rader, J. S., Deasy, J. O., Grigsby, P. W., & Wang, X. (2010). A microRNA expression signature for cervical cancer prognosismicrorna signature in cervical cancer. Cancer Research, 70(4), 1441–1448.https://doi.org/10.1158/0008-5472.CAN-09-3289
  • Huang, L., Huang, Z., Fan, Y., He, L., Ye, M., Shi, K., Ji, B., Huang, J., Wang, Y., & Li, Q. (2017). Foxc1 promotes proliferation and epithelial-mesenchymal transition in cervical carcinoma through the pi3k-Akt signal pathway. American Journal of Translational Research, 93, 1297–1306.
  • Huseinovic, A., Jaspers, A., van Splunter, A. P., Sørgard, H., Wilting, S. M., Swarts, D. R. A., van der Meulen, I. H., van Beusechem, V. W., de Menezes, R. X., & Steenbergen, R. D. M. (2022). Functional screen for microRNAs suppressing anchorage-independent growth in human cervical cancer cells. International Journal of Molecular Sciences, 23, 4791. https://doi.org/10.3390/ijms23094791
  • Idris, S. F., Ahmad, S. S., Scott, M., Vassiliou, G. S., & Hadfield, J. (2013). The role of high-throughput technologies in clinical cancer genomics. Expert Review of Molecular Diagnostics, 13, 167–181.
  • Jhingran, A., Russell, A. H., Seiden, M. V., Duska, L. R., Goodman, A., Lee, S. L., Digumarthy, S. R., & Fuller, A. F. (2020). Cancers of the cervix, vulva, and vagina (pp. 1468–1507).
  • Jia Ren, F., Yao, Y., Cai, X., & Ying Fang, G. (2021). Emerging role of mir-192-5p in human diseases. Frontiers in Pharmacology, 12, 614068. https://doi.org/10.3389/fphar.2021.614068
  • Jiao, X., Sherman, B. T., Huang, D. W., Stephens, R., Baseler, M. W., Lane, H. C., & Lempicki, R. A. (2020). DAVID-WS: A stateful web service to facilitate gene/protein list analysis. Bioinformatics (Oxford, England, 28(13), 1805–1806. https://pubmed.ncbi.nlm.nih.gov/22543366https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3381967/
  • Kashyap, N., Krishnan, N., Kaur, S., & Ghai, S. (2019). Risk factors of cervical cancer: A case-control study. Asia-Pacific Journal of Oncology Nursing, 6(3), 308–314.
  • Kaur, G., Balasubramaniam, S. D., Lee, Y. J., Balakrishnan, V., & Oon, C. E. (2019). Minichromosome maintenance complex (mcm) genes profiling and mcm2 protein expression in cervical cancer development. Asian Pacific Journal of Cancer Prevention: APJCP, 20, 3043– 3049.
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2018). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1110. https://doi.org/10.1093/nar/gky1033
  • Kjær, S. K., Frederiksen, K., Munk, C., & Iftner, T. (2010). Long-term absolute risk of cervical intraepithelial neoplasia grade 3 or worse following human papillomavirus infection: Role of persistence. Journal of the National Cancer Institute, 102(19), 1478–1488.
  • Kori, M., Gov, E., & Arga, K. Y. (2019). Novel genomic biomarker candidates for cervical cancer as identified by differential co-expression network analysis. Omics: A Journal of Integrative Biology, 235, 261–273.
  • Kuku, S., Proctor, I., Loddo, M., Kadalayil, L., KhoshZaban, M., Ledermann, J. A., & Mccormack, M. (2015). Do cell-cycle phase–specific markers predict disease grade, stage, and outcome in cervical carcinoma? International Journal of Gynecologic Cancer, 25, 1066–1072.
  • Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S. L., Jagodnik, K. M., Lachmann, A., McDermott, M. G., Monteiro, C. D., Gundersen, G. W., & Ma’ayan, A. 05 (2016). Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research, 44(W1), W90–W97. https://doi.org/10.1093/nar/gkw377
  • Kumer, A., Chakma, U., Chandro, A., Howlader, D., Akash, S., Kobir, M., Hossain, T., Matin, M. M., et al. (2022). Modified d-glucofuranose computationally screening for inhibitor of breast cancer and triple breast cancer: Chemical descriptor, molecular docking, molecular dynamics and qsar. Journal of the Chilean Chemical Society, 67(3), 5623–5635.
  • Kumer, A., Chakma, U., Matin, M. M., Akash, S., Chando, A., & Howlader, D. (2021). The computational screening of inhibitor for black fungus and white fungus by d-glucofuranose derivatives using in silico and SAR study. Organic Communications, 14(4), 305–322.
  • Kumer, A., Chakma, U., Rana, M. M., Chandro, A., Akash, S., Elseehy, M. M., Albogami, S., & El-Shehawi, A. M. (2022). Investigation of the new inhibitors by sulfadiazine and modified derivatives of α-d-glucopyranoside for white spot syndrome virus disease of shrimp by in silico: Quantum calculations, molecular docking, ADMET and molecular dynamics study. Molecules, 27(12), 3694.
  • Laengsri, V., Kerdpin, U., Plabplueng, C., Treeratanapiboon, L., & Nuchnoi, P. (2018). Cervical cancer markers: Epigenetics and micrornas. Laboratory Medicine, 49(2), 97–111.
  • Lee, J., Jeong, M. I., Kim, H.-R., Park, H., Moon, W.-K., & Kim, B. (2020). Plant extracts as possible agents for sequela of cancer therapies and cachexia. Antioxidants, 9(9), 836.
  • Lin, M., Ye, M., Zhou, J., Wang, Z. P., & Zhu, X. (2019). Recent advances on the molecular mechanism of cervical carcinogenesis based on systems biology technologies. Computational and Structural Biotechnology Journal, 17, 241–250.
  • Li, Y., Sun, C., Tan, Y., Li, L., Zhang, H., Liang, Y., Zeng, J., & Zou, H. mar (2020). Transcription levels and prognostic significance of the NFI family members in human cancers. PeerJ. 8, e8816–e8816. https://pubmed.ncbi.nlm.nih.gov/32219034https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085295/
  • Li, X., Tian, R., Gao, H., Yan, F., Ying, L., Yang, Y., Yang, P., & Gao, Y. (2018). Identification of significant gene signatures and prognostic biomarkers for patients with cervical cancer by integrated bioinformatic methods. Technology in Cancer Research & Treatment, 17, 1533033818767455.
  • Liu, Y., Grimm, M., Tao Dai, W., Hou, M. J., Xiao, Z., & Cao, Y. (2019). Cb-dock: A web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacologica Sinica, 41, 138– 144.
  • Liu, C. J., Hu, F. F., Xia, M. X., Han, L., Zhang, Q., & Guo, A. Y. (2018). GSCALite: A web server for gene set cancer analysis. Bioinformatics, 34(21), 3771–3772. https://doi.org/10.1093/bioinformatics/bty411
  • Liu, H., Xu, J., Yang, Y., Wang, X., Wu, E., Majerciak, V., Zhang, T., Steenbergen, R. D. M., Wang, H. K., Banerjee, N. S., Li, Y., Lu, W., Meyers, C., Zhu, J., Xie, X., Chow, L. T., & Zheng, Z.-M. (2021). Oncogenic HPV promotes the expression of the long noncoding RNA lnc-fanci-2 through e7 and yy1. Proceedings of the National Academy of Sciences, 118, e2014195118. https://doi.org/10.1073/pnas.2014195118
  • Madhumati, G., Kavita, S. S., Anju, M., Uma, S., & Raj, M. H. (2012). Immunohistochemical expression of cell proliferating nuclear antigen (pcna) and p53 protein in cervical cancer. The Journal of Obstetrics and Gynecology of India, 62, 557–561.
  • Mailand, N., Gibbs-Seymour, I., & Bekker-Jensen, S. (2013). Regulation of pcna–protein interactions for genome stability. Nature Reviews Molecular Cell Biology, 14, 269–282.
  • Marth, C., Landoni, F., Mahner, S., McCormack, M., Gonzalez-Martin, A., & Colombo, N. (2017). Cervical cancer: Esmo clinical practice guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 28, iv72–iv83.
  • Medina-Martinez, I., Barron, V., Roman-Bassaure, ’. E., Juarez’-Torres, E., Guardado-Estrada, M., Espinosa, A. M., Bermudez, M., Fernandez, F., Venegas-Vega, C., Orozco, L., Zenteno, E., Kofman, S., & Berumen, J. (2014). Impact of gene dosage on gene expression, biological processes and survival in cervical cancer: A genome-wide follow-up study. PLoS One, 9, 1–23. https://doi.org/10.1371/journal.pone.0097842
  • Menzin, A. W., King, S. A., Aikins, J. K., Mikuta, J. J., & Rubin, S. C. (1994). Taxol (paclitaxel) was approved by FDA for the treatment of patients with recurrent ovarian cancer. Gynecologic Oncology, 54, 103.
  • Montgomery, M. P., Dune, T., Shetty, P. K., & Shetty, A. K. (2015). Knowledge and acceptability of human papillomavirus vaccination and cervical cancer screening among women in Karnataka, India. Journal of Cancer Education, 30(1), 130–137.
  • Nahand, J. S., Vandchali, N. R., Darabi, H., Doroudian, M., Banafshe, H. R., Moghoofei, M., Babaei, F., Salmaninejad, A., & Mirzaei, H. (2020). Exosomal microRNAs: Novel players in cervical cancer. Epigenomics, 12, 1651–1660. https://doi.org/10.2217/epi-2020-0026
  • Nguyen, N. N. Y., Choi, T. G., Kim, J., Jung, M. H., Ko, S. H., Shin, Y., Kang, I., Ha, J., Kim, S. S., & Jo, Y. H. (2020). A 70-gene signature for predicting treatment outcome in advanced-stage cervical cancer. Molecular Therapy-Oncolytics, 19, 47–56.
  • Nirala, N. K., Li, Q., Ghule, P. N., Chen, H.-J., Li, R., Zhu, L. J., Wang, R., Rice, N. P., Mao, J.-H., Stein, J. L., Stein, G. S., van Wijnen, A. J., & Ip, Y. T. (2021). Hinfp is a guardian of the somatic genome by repressing transposable elements. Proceedings of the National Academy of Sciences, 118, e2100839118. https://doi.org/10.1073/pnas.2100839118
  • Pedroza-Torres, A., Lopez’-Urrutia, E., Garc’ıa-Castillo, V., Jacobo-Herrera, N., Herrera, L. A., Peralta-Zaragoza, O., Lopez’-Camarillo, C., De Leon, D. C., Fernandez’-Retana, J., Cerna-Cortes’, J. F., et al. (2014). MicroRNAs in cervical cancer: Evidences for a miRNA profile deregulated by HPV and its impact on radio-resistance. Molecules, 19(5), 6263–6281.
  • Petojevic, T., Pesavento, J. J., Costa, A., Liang, J., Wang, Z., Berger, J. M., & Botchan, M. R. (2015). Cdc45 (cell division cycle protein 45) guards the gate of the eukaryote replisome helicase stabilizing leading strand engagement. Proceedings of the National Academy of Sciences, 112, E249–E258.
  • Plummer, M., Herrero, R., Franceschi, S., Meijer, C. J., Snijders, P., Bosch, F. X., de Sanjose, S., & Munoz, N. (2003). Smoking and cervical cancer: Pooled analysis of the iarc multi-centric case–control study. Cancer Causes & Control, 14(9), 805–814. ’ ˜
  • Reddy, K. B. (2015). Microrna (mirna) in cancer. Cancer Cell International, 15(1), 1–6.
  • Rouillard, A. D., Gundersen, G. W., Fernandez, N. F., Wang, Z., Monteiro, C. D., McDermott, M. G., & Ma’ayan, A. (2016). The harmonizome: A collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database., 2016.
  • Rung, J., & Brazma, A. (2013). Reuse of public genome-wide gene expression data. Nature Reviews Genetics, 14(2), 89–99.
  • Sabapathi, N., Sabarimurugan, S., Royam, M. M., Kumarasamy, C., Xu, X., Xu, G., & Jayaraj, R. (2019). Prognostic significance of foxc1 in various cancers: A systematic review and meta-analysis. Molecular Diagnosis & Therapy, 23, 695–706.
  • Santos, A., Tsafou, K., Stolte, C., Pletscher-Frankild, S., O’Donoghue, S. I., & Jensen, L. J. (2015). Comprehensive comparison of large-scale tissue expression datasets. PeerJ, 3, e1054. https://doi.org/10.7717/peerj.1054
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (March 2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Serrat′ı, S., De Summa, S., Pilato, B., Petriella, D., Lacalamita, R., Tommasi, S., & Pinto, R. (2016). Next-generation sequencing: advances and applications in cancer diagnosis. Onco Targets and Therapy, 9, 7355.
  • Sethupathy, P., Corda, B., & Hatzigeorgiou, A. G. (2006). TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA, 12, 192–197. https://pubmed.ncbi.nlm.nih.gov/16373484https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1370898/
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504.
  • Song, Z., Cui, Y., Li, Q., Deng, J., Ding, X., He, J., Liu, Y., Ju, Z., & Fang, L. (2021). The genetic variability, phylogeny and functional significance of e6, e7 and lcr in human papillomavirus type 52 isolates in Sichuan, China. Virology Journal, 18, 94. https://doi.org/10.1186/s12985-021-01565-5
  • Sun, J., Shi, R., Zhao, S., Li, X., Lu, S., Bu, H., & Ma, X. (2017). Cell division cycle 45 promotes papillary thyroid cancer progression via regulating cell cycle. Tumor Biology, 39, 1010428317705342. https://doi.org/10.1177/1010428317705342
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 71(3), 209–249.
  • Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & von Mering, C. (2019) STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
  • Tang, Z., Kang, B., Li, C., Chen, T., & Zhang, Z. 05 (2019). GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Research, 47(W1), W556–W560. https://doi.org/10.1093/nar/gkz430
  • The Cancer Genome Atlas Research Network. (2017). Integrated genomic and molecular characterization of cervical cancer. Nature, 543(7645), 378.
  • Tilborghs, S., Corthouts, J., Verhoeven, Y., Arias, D., Rolfo, C. D., Trinh, X. B., & van Dam, P. A. (2017). The role of nuclear factor-kappa b signaling in human cervical cancer. Critical Reviews in Oncology/Hematology, 120, 141–150.
  • Wang, J. C. (2002). Cellular roles of DNA topoisomerases: A molecular perspective. Nature Reviews Molecular Cell Biology, 3, 430–440.
  • Wang, B., Shen, Y., Zou, Y., Qi, Z., Huang, G.-L., Xia, S., Gao, R., Hu Li, F., & Huang, Z. (2020). Top2a promotes cell migration, invasion and epithelial–mesenchymal transition in cervical cancer via activating the pi3k/Akt signaling. Cancer Management and Research, 12, 3807–3814.
  • Wang, W., Yue, Z., Tian, Z., Xie, Y., Zhang, J., She, Y., Yang, B.-Y., Ye, Y., & Yang, Y. (2018). Expression of yin yang 1 in cervical cancer and its correlation with e-cadherin expression and hpv16 e6. PLoS One, 13, e0193340. https://doi.org/10.1371/journal.pone.0193340
  • Wang, P., Zhang, L., Zhang, J., & Xu, G. (2022). Microrna-124-3p inhibits cell growth and metastasis in cervical cancer by targeting igf2bp1. Experimental and Therapeutic Medicine, 23. https://doi.org/10.3892/etm.2022.11157
  • Wei, L., Chen, J., Song, C., Zhang, Y., Zhang, Y., Xu, M., Feng, C., Gao, Y., Qian, F., Wang, Q., Shang, D., Zhou, X., Zhu, J., Wang, X., Jia, Y., Liu, J., Zhu, Y.-B., & Li, C. (2021). Cancer CRC: A comprehensive cancer core transcriptional regulatory circuit resource and analysis platform. Frontiers in Oncology, 11, 761700. https://doi.org/10.3389/fonc.2021.761700
  • Xie, B., Ding, Q., Han, H., & Wu, D. (2013). Mircancer: A microRNA-cancer association database constructed by text mining on literature. Bioinformatics, 295, 638–644.
  • Yang, Z., Ren, F., Liu, C., He, S., Sun, G., Gao, Q., Yao, L., Zhang, Y., Miao, R., Cao, Y., Zhao, Y., Zhong, Y., & Zhao, H. (2010). dbdemc: A database of differentially expressed miRNAs in human cancers. BMC Genomics, 11, S5–S5.
  • Yang, C., Zhang, Z.-C., Liu, T., Xu, Y., Xia, B., & Lou, G. (2020). E2f1/2/7/8 as independent indicators of survival in patients with cervical squamous cell carcinoma. Cancer Cell International, 20, 1–17. https://doi.org/10.1186/s12935-020-01594-0
  • Yu Qin, Y., Gong, W., di Zhang, M., Dong Wang, J., Tang, Z., & Quan, Z. (2014). Forkhead box l1 is frequently downregulated in gallbladder cancer and inhibits cell growth through apoptosis induction by mitochondrial dysfunction. PLoS One, 9, e102084. https://doi.org/10.1371/journal.pone.0102084
  • Yu, B., Chen, L., Zhang, W., Li, Y., Zhang, Y., Gao, Y., Teng, X., Zou, L., Wang, Q., Jia, H., Liu, X., Zheng, H., Hou, P.-F., Yang Yu, H., Sun, Y., Zhang, Z., Zhang, P., & Zhang, L. (2020). Top2a and cenpf are synergistic master regulators activated in cervical cancer. BMC Medical Genomics, 13, 145.
  • Zhai, Y., Kuick, R., Nan, B., Ota, I., Weiss, S. J., Trimble, C. L., Fearon, E. R., & Cho, K. R. (2007). Gene expression analysis of preinvasive and invasive cervical squamous cell carcinomas identifies HOXC10 as a key mediator of invasion. Cancer Research, 67(21), 10163–10172.
  • Zhao, M., Huang, W., Zou, S., Shen, Q., & Zhu, X. (2020). A five-genes-based prognostic signature for cervical cancer overall survival prediction. International Journal of Genomics, 2020.
  • Zheng, X., Liu, Z., Zhong, J.-X., Zhou, L., Chen, J., Zheng, L., Li, Z., Zhang, R., Pan, J., Wu, Y., Wei Liu, Z., & Kang, T. (2022). Downregulation of hinfp induces senescence-associated secretory phenotype to promote metastasis in a non-cell-autonomous manner in bladder cancer. Oncogene, 41, 3587–3598.
  • Zhou, G., Soufan, O., Ewald, J., Hancock, R. E. W., Basu, N., & Xia, J. (2019). NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Research, 47(W1), W234–W241. https://doi.org/10.1093/nar/gkz240
  • Zhou, B., Qie, M., Wang, Y., Yan, L., Zhang, Z., Liang, A., Wang, T. C., Wang, X., Song, Y., & Zhang, L. (2010). Relationship between nfkb1 -94 insertion/deletion attg polymorphism and susceptibility of cervical squamous cell carcinoma risk. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 213, 506–511.
  • Zou, S. H., Du, X. R., Lin, H., Wang, P. C., & Li, M. (2018). Paclitaxel inhibits the progression of cervical cancer by inhibiting autophagy via lncrnarp11-381n20.2. European Review for Medical and Pharmacological Sciences, 22, 3010–3017.
  • Zuberi, Z., Mremi, A., Chilongola, J. O., Semango, G., & Sauli, E. (2021). Expression analysis of p16 and top2a protein biomarkers in cervical cancer lesions and their correlation with clinico-histopathological characteristics in a referral hospital, Tanzania. PLoS One, 16, e0259096.https://doi.org/10.1371/journal.pone.0259096

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.