161
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Lawsonia inermis flower aqueous extract expressed better anti-alpha-glucosidase and anti-acetylcholinesterase activity and their molecular dynamics

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 13752-13765 | Received 16 Nov 2022, Accepted 06 Feb 2023, Published online: 11 Mar 2023

References

  • Abdel-Hamid, N. M., Mohafez, O. M., Nazmy, M. H., Farhan, A., & Thabet, K. (2015). The effect of co-administration of Lawsonia inermis extract and octreotide on experimental hepatocellular carcinoma. Environmental Health and Preventive Medicine, 20(3), 195–203. https://doi.org/10.1007/s12199-015-0451-9
  • Ali, B. H., Bashir, A. K., & Tanira, M. O. M. (1995). Anti-inflammatory, antipyretic, and analgesic effects of Lawsonia inermis L. (henna) in rats. Pharmacology, 51(6), 356–363. https://doi.org/10.1159/000139347
  • Alvarez, A., Alarcón, R., Opazo, C., Campos, E. O., Muñoz, F. J., Calderón, F. H., Dajas, F., Gentry, M. K., Doctor, B. P., De Mello, F. G., & Inestrosa, N. C. (1998). Stable complexes involving acetylcholinesterase and amyloid-β peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer’s fibrils. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 18(9), 3213–3223. https://doi.org/10.1523/jneurosci.18-09-03213.1998
  • Alvarez, A., Bronfman, F., Pérez, C. A., Vicente, M., Garrido, J., & Inestrosa, N. C. (1995). Acetylcholinesterase, a senile plaque component, affects the fibrillogenesis of amyloid-β-peptides. Neuroscience Letters, 201(1), 49–52. https://doi.org/10.1016/0304-3940(94)12127-C
  • Atawodi, S. E., Ameh, D. A., Ibrahim, S., Andrew, J. N., Nzelibe, H. C., Onyike, E. O., Anigo, K. M., Abu, E. A., James, D. B., Njoku, G. C., & Sallau, A. B. (2002). Indigenous knowledge system for treatment of trypanosomiasis in Kaduna State of Nigeria. Journal of Ethnopharmacology, 79(2), 279–282. https://doi.org/10.1016/S0378-8741(01)00351-8
  • Badoni Semwal, R., Semwal, D. K., Combrinck, S., Cartwright-Jones, C., & Viljoen, A. (2014). Lawsonia inermis L. (henna): Ethnobotanical, phytochemical and pharmacological aspects. In Journal of Ethnopharmacology. (Vol. 155, Issue 1, pp. 80–103). Elsevier Ireland Ltd. https://doi.org/10.1016/j.jep.2014.05.042
  • Benzie, I. F. F., & Strain J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292
  • Bhakta, H. K., Park, C. H., Yokozawa, T., Tanaka, T., Jung, H. A., & Choi, J. S. (2017). Potential anti-cholinesterase and β-site amyloid precursor protein cleaving enzyme 1 inhibitory activities of cornuside and gallotannins from Cornus officinalis fruits. Archives of Pharmacal Research, 40(7), 836–853. https://doi.org/10.1007/s12272-017-0924-z
  • BIOVIA, 20 Dassault Systems. (2016). Discovery Studio Modeling Environment,Release (2017). Dassault Systems.
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. Academic Press. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Campos, C. (2012). Chronic hyperglycemia and glucose toxicity: Pathology and clinical sequelae. Postgraduate Medicine, 124(6), 90–97. https://doi.org/10.3810/pgm.2012.11.2615
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26Issue(16), 1668–1688. ( https://doi.org/10.1002/jcc.20290
  • Castro, M. F. V., Stefanello, N., Assmann, C. E., Baldissarelli, J., Bagatini, M. D., da Silva, A. D., da Costa, P., Borba, L., da Cruz, I. B. M., Morsch, V. M., & Schetinger, M. R. C. (2021). Modulatory effects of caffeic acid on purinergic and cholinergic systems and oxi-inflammatory parameters of streptozotocin-induced diabetic rats. Life Sciences, 277, 119421. https://doi.org/10.1016/j.lfs.2021.119421
  • Chear, N. J. Y., Khaw, K. Y., Murugaiyah, V., & Lai, C. S. (2016). Cholinesterase inhibitory activity and chemical constituents of Stenochlaena palustris fronds at two different stages of maturity. Journal of Food and Drug Analysis, 24(2), 358–366. https://doi.org/10.1016/j.jfda.2015.12.005
  • Chen, J., Mangelinckx, S., Ma, L., Wang, Z., Li, W., & De Kimpe, N. (2014). Caffeoylquinic acid derivatives isolated from the aerial parts of Gynura divaricata and their yeast α-glucosidase and PTP1B inhibitory activity. Fitoterapia, 99, 1–6. https://doi.org/10.1016/j.fitote.2014.08.015
  • Cheung, J., Rudolph, M. J., Burshteyn, F., Cassidy, M. S., Gary, E. N., Love, J., Franklin, M. C., & Height, J. J. (2012). Structures of human acetylcholinesterase in complex with pharmacologically important ligands. Journal of Medicinal Chemistry, 55(22), 10282–10286. https://doi.org/10.1021/jm300871x
  • Chitra, L., Penislusshiyan, S., Soundariya, M., Logeswari, S., Rajesh, R. V., & Palvannan, T. (2022). Anti-acetylcholinesterase activity of Corallocarpus epigaeus tuber: In vitro kinetics, in silico docking and molecular dynamics analysis. Journal of Molecular Structure, 1255, 132450. https://doi.org/10.1016/j.molstruc.2022.132450
  • Cuong, N. X., Nhiem, N. X., Thao, N. P., Nam, N. H., Dat, N. T., Anh, H. L. T., Huong, L. M., Kiem, P., Van, Minh, C., Van, Won, J. H., Chung, W. Y., & Kim, Y. H. (2010). Inhibitors of osteoclastogenesis from Lawsonia inermis leaves. Bioorganic & Medicinal Chemistry Letters, 20(16), 4782–4784. https://doi.org/10.1016/j.bmcl.2010.06.118
  • Dahlqvist, A., & Telenius, U. (1969). Column chromatography of human small-intestinal maltase, isomaltase and invertase activities. The Biochemical Journal, 111(2), 139–146. https://doi.org/10.1042/bj1110139
  • Dart, A. B., Sellers, E. A., Martens, P. J., Rigatto, C., Brownell, M. D., & Dean, H. J. (2012). High burden of kidney disease in youth-onset type 2 diabetes. Diabetes Care, 35(6), 1265–1271. https://doi.org/10.2337/dc11-2312
  • de Souza, L. G., Rennã, M. N., & Figueroa-Villar, J. D. (2016). Coumarins as cholinesterase inhibitors: A review. In Chemico-Biological Interactions. (Vol. 254, pp.11–23). Elsevier Ireland Ltd. https://doi.org/10.1016/j.cbi.2016.05.001
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40, 82–92.
  • Dixon, M. (1953). The determination of enzyme inhibitor constants. The Biochemical Journal, 55(1), 170–171. https://doi.org/10.1042/bj0550170
  • Drachman, D. A., & Leavitt, J. (1974). Human Memory and the Cholinergic System: A Relationship to Aging? Archives of Neurology, 30(2), 113–121. https://doi.org/10.1001/archneur.1974.00490320001001
  • Durazzo, A., D’Addezio, L., Camilli, E., Piccinelli, R., Turrini, A., Marletta, L., Marconi, S., Lucarini, M., Lisciani, S., Gabrielli, P., Gambelli, L., Aguzzi, A., & Sette, S. (2018). From plant compounds to botanicals and back: A current snapshot. Molecules (Basel, Switzerland), 23(8), 1844. https://doi.org/10.3390/molecules23081844
  • Eggermont, E. (1969). The hydrolysis of the naturally occurring alpha-glucosides by the human intestinal mucosa. European Journal of Biochemistry, 9(4), 483–487. https://doi.org/10.1111/j.1432-1033.1969.tb00634.x
  • Elkhalifa, K. F. (2002). Treatment of skin diseases in the Sudan using tree materials. Arab Gulf Journal of Scientific Research, 20(4), 232–235.
  • Falsafi-Zadeh, S., Karimi, Z., & Galehdari, H. (2012). VMD DisRg: New user-friendly implement for calculation distance and radius of gyration in VMD program. Bioinformation, 8(7), 341–343. https://doi.org/10.6026/97320630008341
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Giri, B., Dey, S., Das, T., Sarkar, M., Banerjee, J., & Dash, S. K. (2018). Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. In Biomedicine and Pharmacotherapy. (Vol. 107, pp.306–328). Elsevier Masson SAS. https://doi.org/10.1016/j.biopha.2018.07.157
  • Gu, Y., Yang, X., Shang, C., Thao, T. T. P., & Koyama, T. (2021). Inhibitory properties of saponin from: Eleocharis dulcis peel against α-glucosidase. RSC Advances, 11(25), 15400–15409. https://doi.org/10.1039/d1ra02198b
  • Ferreira-Vieira, T. H., Guimaraes, I. M., Silva, F. R., & Ribeiro, F. M. (2016). Alzheimer’s disease: Targeting the Cholinergic System. Current Neuropharmacology, 14(1), 101–115. https://doi.org/10.2174/1570159x13666150716165726
  • Habtemariam, S. (2011). α-Glucosidase inhibitory activity of kaempferol-3-O-rutinoside. Natural Product Communications, 6(2), 201–203. https://doi.org/10.1177/1934578X1100600211
  • Hossain, C. M., Maji, H., & Chakraborty, P. (2011). Hepatoprotective activity of Lawsonia Inermis Linn, warm aqueous extract in carbon tetrachloride­ induced hepatic injury in wister rats. Asian Journal of Pharmaceutical and Clinical Research, 4(3), 106–109.
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM_PBSA and MM_GBSA Methods. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Hoyos, C. M., Colagiuri, S., Turner, A., Ireland, C., Naismith, S. L., & Duffy, S. L. (2022). Brain oxidative stress and cognitive function in older adults with diabetes and pre-diabetes who are at risk for dementia. Diabetes Research and Clinical Practice, 184, 109178. https://doi.org/10.1016/j.diabres.2021.109178
  • Jabir, N. R., Khan, F. R., & Tabrez, S. (2018). Cholinesterase targeting by polyphenols: A therapeutic approach for the treatment of Alzheimer’s disease. CNS Neuroscience & Therapeutics, 24Issue( 9), 753–762. ). Cholinesterase targeting by polyphenols: A therapeutic approach for the treatment of alzheimer’s disease. In CNS Neuroscience and Therapeutics (Blackwell Publishing Ltd. https://doi.org/10.1111/cns.12971
  • Jang, J. H., Park, J. E., & Han, J. S. (2018). Scopoletin inhibits α-glucosidase in vitro and alleviates postprandial hyperglycemia in mice with diabetes. European Journal of Pharmacology, 834, 152–156. https://doi.org/10.1016/j.ejphar.2018.07.032
  • Jeyaseelan, E. C., Jenothiny, S., Pathmanathan, M. K., & Jeyadevan, J. P. (2012). Antibacterial activity of sequentially extracted organic solvent extracts of fruits, flowers and leaves of Lawsonia inermis L. from Jaffna. Asian Pacific Journal of Tropical Biomedicine, 2(10), 798–802. https://doi.org/10.1016/S2221-1691(12)60232-9
  • Kan, L., Capuano, E., Fogliano, V., Verkerk, R., Mes, J. J., Tomassen, M. M. M., & Oliviero, T. (2021). Inhibition of α-glucosidases by tea polyphenols in rat intestinal extract and Caco-2 cells grown on Transwell. Food Chemistry, 361, 130047. https://doi.org/10.1016/j.foodchem.2021.130047
  • Khan, H., Amin, S., Kamal, M. A., & Patel, S. (2018). Marya Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. In Biomedicine and Pharmacotherapy. (Vol. 101, pp.860–870). Elsevier Masson SAS. https://doi.org/10.1016/j.biopha.2018.03.007
  • Kim, J. H., Choi, G. N., Kwak, J. H., Jeong, H. R., Jeong, C. H., & Heo, H. J. (2011). Neuronal cell protection and acetylcholinesterase inhibitory effect of the phenolics in chestnut inner skin. Food Science and Biotechnology, 20(2), 311–318. https://doi.org/10.1007/s10068-011-0044-3
  • Krentz, A. J., & Bailey, C. J. (2005). Oral antidiabetic agents: Current role in type 2 diabetes mellitus. In Drugs (Vol. 65, Issue 3, pp. 385–411). Drugs.https://doi.org/10.2165/00003495-200565030-00005
  • Laar, F. (2008). Alpha-glucosidase inhibitors in the early treatment of type 2 diabetes. Vascular Health and Risk Management, 4(6), 1189–1195. https://doi.org/10.2147/VHRM.S3119
  • Lang, P. T., Brozell, S. R., Mukherjee, S., Pettersen, E. F., Meng, E. C., Thomas, V., Rizzo, R. C., Case, D. A., James, T. L., & Kuntz, I. D. (2009). DOCK 6: Combining techniques to model RNA-small molecule complexes. RNA (New York, N.Y.), 15(6), 1219–1230. https://doi.org/10.1261/rna.1563609
  • Lascar, N., Brown, J., Pattison, H., Barnett, A. H., Bailey, C. J., & Bellary, S. (2018). Type 2 diabetes in adolescents and young adults. In The Lancet Diabetes and Endocrinology. (Vol. 6, Issue 1, pp.69–80) Lancet Publishing Group. https://doi.org/10.1016/S2213-8587(17)30186-9
  • Li, X., Bai, Y., Jin, Z., & Svensson, B. (2022). Food-derived non-phenolic α-amylase and α-glucosidase inhibitors for controlling starch digestion rate and guiding diabetes-friendly recipes. Lwt, 153(March 2021), 112455. https://doi.org/10.1016/j.lwt.2021.112455
  • Li, Q., Gao, W., Cao, J., Bi, X., Chen, G., Zhang, X., Xia, X., & Zhao, Y. (2014). New cytotoxic compounds from flowers of Lawsonia inermis L. Fitoterapia, 94, 148–154. https://doi.org/10.1016/j.fitote.2014.02.007
  • Lim, J., Kim, D. K., Shin, H., Hamaker, B. R., & Lee, B. H. (2019). Different inhibition properties of catechins on the individual subunits of mucosal α-glucosidases as measured by partially-purified rat intestinal extract. Food & Function, 10(7), 4407–4413. https://doi.org/10.1039/c9fo00990f
  • Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56(3), 658–666. https://doi.org/10.1021/ja01318a036
  • Lin, X., Xu, Y., Pan, X., Xu, J., Ding, Y., Sun, X., Song, X., Ren, Y., & Shan, P. F. (2020). Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Scientific Reports, 10(1), 14790. https://doi.org/10.1038/s41598-020-71908-9
  • Liu, Y., Liu, H., Yang, J., Liu, X., Lu, S., Wen, T., Xie, L., & Wang, G. (2008). Increased amyloid β-peptide (1-40) level in brain of streptozotocin-induced diabetic rats. Neuroscience, 153(3), 796–802. https://doi.org/10.1016/j.neuroscience.2008.03.019
  • Mahmoudi, N., Kiasalari, Z., Rahmani, T., Sanaierad, A., Afshin-Majd, S., Naderi, G., Baluchnejadmojarad, T., & Roghani, M. (2021). Diosgenin attenuates cognitive impairment in streptozotocin-induced diabetic rats: Underlying mechanisms. Neuropsychobiology, 80(1), 25–35. https://doi.org/10.1159/000507398
  • Mao, X. Y., Cao, D. F., Li, X., Yin, J. Y., Wang, Z. B., Zhang, Y., Mao, C. X., Zhou, H. H., & Liu, Z. Q. (2014). Huperzine a ameliorates cognitive deficits in streptozotocin-induced diabetic rats. International Journal of Molecular Sciences, 15(5), 7667–7683. https://doi.org/10.3390/ijms15057667
  • Marc, E. B., Nelly, A., Annick, D. D., & Frederic, D. (2008). Plants used as remedies antirheumatic and antineuralgic in the traditional medicine of Lebanon. Journal of Ethnopharmacology, 120(3), 315–334. https://doi.org/10.1016/j.jep.2008.08.024
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Mathew, S., Abraham, T. E., & Zakaria, Z. A. (2015). Reactivity of phenolic compounds towards free radicals under in vitro conditions. Journal of Food Science and Technology, 52(9), 5790–5798. https://doi.org/10.1007/s13197-014-1704-0
  • Messaadia, L., Bekkar, Y., Benamira, M., & Lahmar, H. (2020). Predicting the antioxidant activity of some flavonoids of Arbutus plant: A theoretical approach. Chemical Physics Impact, 1, 100007. https://doi.org/10.1016/j.chphi.2020.100007
  • Milella, L., Milazzo, S., De Leo, M., Vera Saltos, M. B., Faraone, I., Tuccinardi, T., Lapillo, M., De Tommasi, N., & Braca, A. (2016). α-Glucosidase and α-amylase inhibitors from Arcytophyllum thymifolium. Journal of Natural Products, 79(8), 2104–2112. https://doi.org/10.1021/acs.jnatprod.6b00484
  • Nakashima, S., Oda, Y., Nakamura, S., Liu, J., Onishi, K., Kawabata, M., Miki, H., Himuro, Y., Yoshikawa, M., & Matsuda, H. (2015). Inhibitors of melanogenesis in B16 melanoma 4A5 cells from flower buds of Lawsonia inermis (Henna). Bioorganic & Medicinal Chemistry Letters, 25(13), 2702–2706. https://doi.org/10.1016/j.bmcl.2015.04.052
  • Nizamutdinova, I. T., Jin, Y. C., Chung, J., Shin, S. C., Lee, S. J., Seo, H. G., Lee, J. H., Chang, K. C., & Kim, H. J. (2009). The anti-diabetic effect of anthocyanins in streptozotocin-induced diabetic rats through glucose transporter 4 regulation and prevention of insulin resistance and pancreatic apoptosis. Molecular Nutrition & Food Research, 53(11), 1419–1429. https://doi.org/10.1002/mnfr.200800526
  • Nolan, J. J. (2010). Ageing brain abnormalities in young obese patients with type 2 diabetes: A cause for concern. Diabetologia, 53(11), 2273–2275. https://doi.org/10.1007/s00125-010-1890-x
  • Oboh, G., Ogunsuyi, O. B., Ogunbadejo, M. D., & Adefegha, S. A. (2016). Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose. Journal of Food and Drug Analysis, 24(3), 627–634. https://doi.org/10.1016/j.jfda.2016.03.003
  • Ong, C. Y., Ling, S. K., Ali, R. M., Chee, C. F., Samah, Z. A., Ho, A. S. H., Teo, S. H., & Lee, H. B. (2009). Systematic analysis of in vitro photo-cytotoxic activity in extracts from terrestrial plants in Peninsula Malaysia for photodynamic therapy. Journal of Photochemistry and Photobiology. B, Biology, 96(3), 216–222. https://doi.org/10.1016/j.jphotobiol.2009.06.009
  • Othman, M. R., Othman, R., Ismail, A. A., Hazni, H., Ahmad, K., Razzak, M. A., Yusoff, Z. M., & Awang, K. (2020). High-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) analysis on the ethanol:water (80:20) extract of Lawsonia inermis leaves. Sains Malaysiana, 49(7), 1597–1613. https://doi.org/10.17576/jsm-2020-4907-12
  • Pandey, J., Bastola, T., Tripathi, J., Tripathi, M., Rokaya, R. K., Dhakal, B., D. C, R., Bhandari, R., & Poudel, A. (2020). Estimation of total quercetin and rutin content in Malus domestica of nepalese origin by HPLC method and determination of their antioxidative activity. Journal of Food Quality, 2020, 8853426. https://doi.org/10.1155/2020/8853426
  • Philip, J. P., Madhumitha, G., & Mary, S. A. (2011). Free radical scavenging and reducing power of Lawsonia inermis L. seeds. Asian Pacific Journal of Tropical Medicine, 4(6), 457–461. https://doi.org/10.1016/S1995-7645(11)60125-9
  • Pyner, A., Nyambe-Silavwe, H., & Williamson, G. (2017). Inhibition of human and rat sucrase and maltase activities to assess antiglycemic potential: Optimization of the assay using acarbose and polyphenols. Journal of Agricultural and Food Chemistry, 65(39), 8643–8651. https://doi.org/10.1021/acs.jafc.7b03678
  • Rahiman, F. A., Mahmad, N., Taha, R. M., Elias, H., & Zaman, F. H. (2013). Antimicrobial properties of Lawsonia inermis syn. Lawsonia alba in vivo and in vitro. Journal of Food, Agriculture and Environment, 11(3–4), 502–504.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9-10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Rollinger, J. M., Hornick, A., Langer, T., Stuppner, H., & Prast, H. (2004). Acetylcholinesterase inhibitory activity of scopolin and scopoletin discovered by virtual screening of natural products. Journal of Medicinal Chemistry, 47(25), 6248–6254. https://doi.org/10.1021/jm049655r
  • Ruangritchankul, S., Chantharit, P., Srisuma, S., & Gray, L. C. (2021). Adverse drug reactions of acetylcholinesterase inhibitors in older people living with dementia: A comprehensive literature review. In Therapeutics and Clinical Risk Management. (Vol. 17, pp.927–949). Dove Medical Press Ltd. https://doi.org/10.2147/TCRM.S323387
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. In Journal of Computational Physics, 23 (3), 327–341. ( https://doi.org/10.1016/0021-9991(77)90098-5
  • Sakayanathan, P., Loganathan, C., Iruthayaraj, A., Periyasamy, P., Poomani, K., Periasamy, V., & Thayumanavan, P. (2018). Biological interaction of newly synthesized astaxanthin-s-allyl cysteine biconjugate with Saccharomyces cerevisiae and mammalian α-glucosidase: In vitro kinetics and in silico docking analysis. International Journal of Biological Macromolecules, 118(Pt A), 252–262. https://doi.org/10.1016/j.ijbiomac.2018.06.027
  • Saura-Calixto, F. (2012). Concept and health-related properties of nonextractable polyphenols: The missing dietary polyphenols. In Journal of Agricultural and Food Chemistry (Vol. 60, Issue 45, pp. 11195–11200). American Chemical Society. https://doi.org/10.1021/jf303758j
  • Sharma, J., Gairola, S., Gaur, R. D., & Painuli, R. M. (2012). The treatment of jaundice with medicinal plants in indigenous communities of the Sub-Himalayan region of Uttarakhand, India. Journal of Ethnopharmacology, 143(1), 262–291. https://doi.org/10.1016/j.jep.2012.06.034
  • Silva, L., Rodrigues, A. M., Ciriani, M., Falé, P. L. V., Teixeira, V., Madeira, P., Machuqueiro, M., Pacheco, R., Florêncio, M. H., Ascensão, L., & Serralheiro, M. L. M. (2018). Erratum to: Antiacetylcholinesterase activity and docking studies with chlorogenic acid, cynarin and arzanol from Helichrysum stoechas (Lamiaceae) (Medicinal Chemistry Research, (2017), 26, 11, (2942-2950), https://doi.org/10.1007/s00044-017-1994-7). In Medicinal Chemistry Research. (Vol. 27, Issue 5, p. 1558). Birkhauser Boston.
  • Sim, L., Quezada-Calvillo, R., Sterchi, E. E., Nichols, B. L., & Rose, D. R. (2008). Human Intestinal Maltase-Glucoamylase: Crystal Structure of the N-Terminal Catalytic Subunit and Basis of Inhibition and Substrate Specificity. Journal of Molecular Biology, 375(3), 782–792. https://doi.org/10.1016/j.jmb.2007.10.069
  • Sim, L., Willemsma, C., Mohan, S., Naim, H. Y., Pinto, B. M., & Rose, D. R. (2010). Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. The Journal of Biological Chemistry, 285(23), 17763–17770. https://doi.org/10.1074/jbc.M109.078980
  • Singh, D. K., Cheema, H. S., Saxena, A., Singh, S., Darokar, M. P., Bawankule, D. U., Shanker, K., Luqman, S., & Jyotshana. (2017). Fraxetin and ethyl acetate extract from Lawsonia inermis L. ameliorate oxidative stress in P. berghei infected mice by augmenting antioxidant defence system. Phytomedicine : international Journal of Phytotherapy and Phytopharmacology, 36, 262–272., https://doi.org/10.1016/j.phymed.2017.09.012
  • Şöhretoğlu, D., & Sari, S. (2020). Flavonoids as alpha-glucosidase inhibitors: mechanistic approaches merged with enzyme kinetics and molecular modelling. In Phytochemistry Reviews. (Vol. 19, Issue 5, pp.1081–1092). Springer Science and Business Media B.V. https://doi.org/10.1007/s11101-019-09610-6
  • Song, S. H., & Gray, T. A. (2012). Early-onset type 2 diabetes: higher burden of atherogenic apolipoprotein particles during statin treatment. QJM : monthly Journal of the Association of Physicians, 105(10), 973–980. https://doi.org/10.1093/qjmed/hcs113
  • Sorescu, A.-A., Nuta, A., Ion, R.-M., & Iancu, L. (2018). Qualitative analysis of phytochemicals from sea buckthorn and gooseberry. In Phytochemicals - Source of Antioxidants and Role in Disease Prevention, InTech. https://doi.org/10.5772/intechopen.77365
  • Stanciu, G. D., Bild, V., Ababei, D. C., Rusu, R. N., Cobzaru, A., Paduraru, L., & Bulea, D. (2020). Link between diabetes and Alzheimer’s disease due to the shared amyloid aggregation and deposition involving both neurodegenerative changes and neurovascular damages. In Journal of Clinical Medicine. (Vol. 9, Issue 6, pp.1–25). MDPI. https://doi.org/10.3390/jcm9061713
  • Swargiary, A., Roy, M. K., & Mahmud, S. (2022). Phenolic compounds as α-glucosidase inhibitors: a docking and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2022.2058092
  • Szwajgier, D., Borowiec, K., & Zapp, J. (2020). Activity-guided isolation of cholinesterase inhibitors quercetin, rutin and kaempferol from Prunus persica fruit. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 75(3-4), 87–96. https://doi.org/10.1515/znc-2019-0079
  • Tafesse, T. B., Bule, M. H., Khoobi, M., Faramarzi, M. A., Abdollahi, M., & Amini, M. (2020). Coumarin-based Scaffold as α-glucosidase inhibitory activity: Implication for the development of potent antidiabetic agents. Mini Reviews in Medicinal Chemistry, 20(2), 134–151. https://doi.org/10.2174/1389557519666190925162536
  • Tian, Z., Wang, J., Wang, Y., Zhang, M., & Zhou, Y. (2017). Effects of butylphthalide on cognitive decline in diabetic rats. Molecular Medicine Reports, 16(6), 9131–9136. https://doi.org/10.3892/mmr.2017.7700
  • Toda, M., Kawabata, J., & Kasai, T. (2001). Inhibitory effects of Ellagi- and Gallotannins on rat intestinal α-glucosidase complexes. Bioscience, Biotechnology, and Biochemistry, 65(3), 542–547. https://doi.org/10.1271/bbb.65.542
  • Türkan, F., Taslimi, P., & Saltan, F. Z. (2019). Tannic acid as a natural antioxidant compound: Discovery of a potent metabolic enzyme inhibitor for a new therapeutic approach in diabetes and Alzheimer’s disease. Journal of Biochemical and Molecular Toxicology, 33(8), e22340. https://doi.org/10.1002/jbt.22340
  • Waterhouse, A. L. (2003). Determination of total phenolics. In Current Protocols in Food Analytical Chemistry. (Vol. 6, Issue 1, p. I1.1.1–I1.1.8) John Wiley & Sons, Inc. https://doi.org/10.1002/0471142913.fai0101s06
  • Willette, A. A., Xu, G., Johnson, S. C., Birdsill, A. C., Jonaitis, E. M., Sager, M. A., Hermann, B. P., Rue, A. La, Asthana, S., & Bendlin, B. B. (2013). Insulin resistance, brain atrophy, and cognitive performance in late middle-aged adults. Diabetes Care, 36(2), 443–449. https://doi.org/10.2337/dc12-0922
  • Yang, Y., Liang, X., Jin, P., Li, N., Zhang, Q., Yan, W., Zhang, H., & Sun, J. (2019). Screening and determination for potential acetylcholinesterase inhibitory constituents from ginseng stem–leaf saponins using ultrafiltration (UF)-LC-ESI-MS2. Phytochemical Analysis : PCA, 30(1), 26–33. https://doi.org/10.1002/pca.2787
  • Yikna, B. B., & Yehualashet, A. S. (2021). Medicinal plant extracts evaluated in vitro and in vivo for antidiabetic activities in Ethiopia: Bases for future clinical trials and related investigations. In Evidence-based Complementary and Alternative Medicine (Vol. 2021). Hindawi Limited. https://doi.org/10.1155/2021/9108499
  • Zhang, L., Chen, Q., Li, L., Kwong, J. S. W., Jia, P., Zhao, P., Wang, W., Zhou, X., Zhang, M., & Sun, X. (2016). Alpha-glucosidase inhibitors and hepatotoxicity in type 2 diabetes: A systematic review and meta-analysis. Scientific Reports, 6, 32649. https://doi.org/10.1038/srep32649
  • Zhang, L., Ma, Q., & Zhou, Y. (2020). Strawberry leaf extract treatment alleviates cognitive impairment by Activating Nrf2/HO-1 signaling in rats with streptozotocin-induced diabetes. Frontiers in Aging Neuroscience, 12, 201. https://doi.org/10.3389/fnagi.2020.00201

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.