218
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Novel phytochemical inhibitors targeting monkeypox virus thymidine and serine/threonine kinase: integrating computational modeling and molecular dynamics simulation

ORCID Icon, , , , , , ORCID Icon & ORCID Icon show all
Pages 13679-13695 | Received 25 Nov 2022, Accepted 06 Feb 2023, Published online: 28 Feb 2023

References

  • Adnan, M., Khan, S., Al-Shammari, E., Patel, M., Saeed, M., & Hadi, S. (2017). In pursuit of cancer metastasis therapy by bacteria and its biofilms: History or future. Medical Hypotheses, 100, 78–81. https://doi.org/10.1016/j.mehy.2017.01.018
  • Adnan, M., Siddiqui, A. J., Noumi, E., Hannachi, S., Ashraf, S. A., Awadelkareem, A. M., Snoussi, M., Badraoui, R., Bardakci, F., Sachidanandan, M., Patel, M., & Patel, M. (2022). Integrating network pharmacology approaches to decipher the multi-target pharmacological mechanism of microbial biosurfactants as novel green antimicrobials against listeriosis. Antibiotics, 12(1), 5. https://doi.org/10.3390/antibiotics12010005
  • Ahn, M. J., Kim, C. Y., Lee, J. S., Kim, T. G., Kim, S. H., Lee, C. K., Lee, B. B., Shin, C. G., Huh, H., & Kim, J. (2002). Inhibition of HIV-1 integrase by galloyl glucoses from Terminalia chebula and flavonol glycoside gallates from Euphorbia pekinensis. Planta Medica, 68(5), 457–459. https://doi.org/10.1055/s-2002-32070
  • Amir, M., Mohammad, T., Prasad, K., Hasan, G. M., Kumar, V., Dohare, R., Islam, A., Ahmad, F., & Imtaiyaz Hassan, M. (2020). Virtual high-throughput screening of natural compounds in-search of potential inhibitors for protection of telomeres 1 (POT1). Journal of Biomolecular Structure & Dynamics, 38(15), 4625–4634. https://doi.org/10.1080/07391102.2019.1682052
  • Arunkumar, R., Sharmila, G., Elumalai, P., Senthilkumar, K., Banudevi, S., Gunadharini, D. N., Benson, C. S., Daisy, P., & Arunakaran, J. (2012). Effect of diallyl disulfide on insulin-like growth factor signaling molecules involved in cell survival and proliferation of human prostate cancer cells in vitro and in silico approach through docking analysis. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 19(10), 912–923. https://doi.org/10.1016/j.phymed.2012.04.009
  • Awadelkareem, A. M., Al-Shammari, E., Elkhalifa, A. E. O., Adnan, M., Siddiqui, A. J., Snoussi, M., Khan, M. I., Azad, Z. R. A. A., Patel, M., & Ashraf, S. A. (2022). Phytochemical and in silico ADME/Tox analysis of Eruca sativa extract with antioxidant, antibacterial and anticancer potential against Caco-2 and HCT-116 colorectal carcinoma cell lines. Molecules, 27(4), 1409. https://doi.org/10.3390/molecules27041409
  • Baell, J. B. (2016). Feeling nature’s PAINS: Natural products, natural product drugs, and pan assay interference compounds (PAINS). Journal of Natural Products, 79(3), 616–628. https://doi.org/10.1021/acs.jnatprod.5b00947
  • Bappy, M. N. I., Robin, T. B., Prome, A. A., Laskar, F. S., Roy, A., Akter, H., & Zinnah, K. M. A. (2022). Subtractive proteomics analysis to uncover the potent drug targets for distinctive drug design of Candida auris. BioRxiv.
  • Bekker, H., Berendsen, H. J. C., Dijkstra, E. J., Achterop, S., Vondrumen, R., Vanderspoel, D., Sijbers, A., Keegstra, H., & Renardus, M. K. R. (1993). Gromacs-a parallel computer for molecular-dynamics simulations. In 4th International Conference on Computational Physics (PC 92), pp. 252–256.
  • Bowie, J. U., Lüthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science (New York, N.Y.), 253(5016), 164–170. https://doi.org/10.1126/science.1853201
  • Brogi, S., Ramalho, T. C., Medina-Franco, J. L., Kuca, K., & Valko, M. (2020). In silico methods for drug design and discovery. Frontiers in Chemistry, 8, 612. https://doi.org/10.3389/fchem.2020.00612
  • Chang, I. M. (1997). Antiviral activity of aucubin against hepatitis B virus replication. Phytotherapy Research, 11(3), 189–192. https://doi.org/10.1002/(SICI)1099-1573(199705)11:3<189::AID-PTR67>3.0.CO;2-R
  • Cherry, J. J., Rietz, A., Malinkevich, A., Liu, Y., Xie, M., Bartolowits, M., Davisson, V. J., Baleja, J. D., & Androphy, E. J. (2013). Structure based identification and characterization of flavonoids that disrupt human papillomavirus-16 E6 function. PloS One, 8(12), e84506. https://doi.org/10.1371/journal.pone.0084506
  • Chiang, L. C., Ng, L. T., Cheng, P. W., Chiang, W., & Lin, C. C. (2005). Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clinical and Experimental Pharmacology & Physiology, 32(10), 811–816. https://doi.org/10.1111/j.1440-1681.2005.04270.x
  • Cho, J. K., Curtis-Long, M. J., Lee, K. H., Kim, D. W., Ryu, H. W., Yuk, H. J., & Park, K. H. (2013). Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorganic & Medicinal Chemistry, 21(11), 3051–3057. https://doi.org/10.1016/j.bmc.2013.03.027
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Combet, C., Blanchet, C., Geourjon, C., & Deleage, G. (2000). NPS@: Network protein sequence analysis. Trends in Biochemical Sciences, 25(3), 147–150. https://doi.org/10.1016/s0968-0004(99)01540-6
  • Consortium, U. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515.
  • Dahiya, R., Mohammad, T., Gupta, P., Haque, A., Alajmi, M. F., Hussain, A., & Hassan, M. I. (2019). Molecular interaction studies on ellagic acid for its anticancer potential targeting pyruvate dehydrogenase kinase 3. RSC Advances, 9(40), 23302–23315. https://doi.org/10.1039/c9ra02864a
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • Danaher, R. J., Wang, C., Dai, J., Mumper, R. J., & Miller, C. S. (2011). Antiviral effects of blackberry extract against herpes simplex virus type 1. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 112(3), e31-5–e35. https://doi.org/10.1016/j.tripleo.2011.04.007
  • El Omari, K., Solaroli, N., Karlsson, A., Balzarini, J., & Stammers, D. K. (2006). Structure of vaccinia virus thymidine kinase in complex with dTTP: insights for drug design. BMC Structural Biology, 6(1), 1–9. https://doi.org/10.1186/1472-6807-6-22
  • Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook (pp. 571–607).
  • Gezici, S., & Şekeroğlu, N. (2019). Current perspectives in the application of medicinal plants against cancer: Novel therapeutic agents. Anti-Cancer Agents in Medicinal Chemistry, 19(1), 101–111. https://doi.org/10.2174/1871520619666181224121004
  • Gill, S. C., & Von Hippel, P. H. (1989). Calculation of protein extinction coefficients from amino acid sequence data. Analytical Biochemistry, 182(2), 319–326. https://doi.org/10.1016/0003-2697(89)90602-7
  • Guex, N., & Peitsch, M. C. (1997). SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. https://doi.org/10.1002/elps.1150181505
  • Guruprasad, K., Reddy, B. V. B., & Pandit, M. W. (1990). Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, 4(2), 155–161. https://doi.org/10.1093/protein/4.2.155
  • Hubbard, R. E., & Haider, M. K. (2010). Hydrogen bonds in proteins: role and strength. eLS.
  • Hwang, Y. C., Chu, J. J., Yang, P. L., Chen, W., & Yates, M. V. (2008). Rapid identification of inhibitors that interfere with poliovirus replication using a cell-based assay. Antiviral Research, 77(3), 232–236. https://doi.org/10.1016/j.antiviral.2007.12.009
  • Hussain, W., Haleem, K. S., Khan, I., Tauseef, I., Qayyum, S., Ahmed, B., & Riaz, M. N. (2017). Medicinal plants: A repository of antiviral metabolites. Future Virology, 12(6), 299–308. https://doi.org/10.2217/fvl-2016-0110
  • Ijaz, S., Akhtar, N., Khan, M. S., Hameed, A., Irfan, M., Arshad, M. A., Ali, S., & Asrar, M. (2018). Plant derived anticancer agents: A green approach towards skin cancers. Biomedicine & Pharmacotherapy, 103, 1643–1651. https://doi.org/10.1016/j.biopha.2018.04.113
  • Ikai, A. (1980). Thermostability and aliphatic index of globular proteins. The Journal of Biochemistry, 88(6), 1895–1898.
  • Iqbal, J., Abbasi, B. A., Mahmood, T., Kanwal, S., Ali, B., Shah, S. A., Khalil, A. T. J. (2017). Plant-derived anticancer agents: A green anticancer approach. Asian Pacific Journal of Tropical Biomedicine, 7(12), 1129–1150. https://doi.org/10.1016/j.apjtb.2017.10.016
  • Jacob, T., Van den Broeke, C., & Favoreel, H. W. (2011). Viral serine/threonine protein kinases. Journal of Virology, 85(3), 1158–1173. https://doi.org/10.1128/JVI.01369-10
  • Jassim, S. A. A., & Naji, M. A. (2003). Novel antiviral agents: A medicinal plant perspective. Journal of Applied Microbiology, 95(3), 412–427. https://doi.org/10.1046/j.1365-2672.2003.02026.x
  • Jeong, H. J., Ryu, Y. B., Park, S. J., Kim, J. H., Kwon, H. J., Kim, J. H., Park, K. H., Rho, M. C., & Lee, W. S. (2009). Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorganic & Medicinal Chemistry, 17(19), 6816–6823. https://doi.org/10.1016/j.bmc.2009.08.036
  • Kamenarska, Z., Serkedjieva, J., Najdenski, H., Stefanov, K., Tsvetkova, I., Dimitrova-Konaklieva, S., & Popov, S. (2009). Antibacterial, antiviral, and cytotoxic activities of some red and brown seaweeds from the Black Sea. BOTM, 52(1), 80–86. https://doi.org/10.1515/BOT.2009.030
  • Kantardjieff, K. A., & Rupp, B. (2004). Protein isoelectric point as a predictor for increased crystallization screening efficiency. Bioinformatics (Oxford, England), 20(14), 2162–2168. https://doi.org/10.1093/bioinformatics/bth066
  • Kashiwada, Y., Wang, H. K., Nagao, T., Kitanaka, S., Yasuda, I., Fujioka, T., Yamagishi, T., Cosentino, L. M., Kozuka, M., Okabe, H., Ikeshiro, Y., Hu, C. Q., Yeh, E., & Lee, K. H. (1998). Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. Journal of Natural Products, 61(9), 1090–1095. https://doi.org/10.1021/np9800710
  • Kaul, T. N., Middleton, E., Jr,., & Ogra, P. L. (1985). Antiviral effect of flavonoids on human viruses. Journal of Medical Virology, 15(1), 71–79. https://doi.org/10.1002/jmv.1890150110
  • Khan, T., Ali, M., Khan, A., Nisar, P., Jan, S. A., Afridi, S., & Shinwari, Z. K. (2019). Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules, 10(1), 47. https://doi.org/10.3390/biom10010047
  • Kim, H. K., Kang, B. J., Park, K. J., Seob, B., & Whang, W. K. (1998). Anti-herpes simplex virus type 1 (HSV-1) effect of isorhamnetin 3-O-D-glucopyranoside Isolated from Brassica rapa. Journal of the Pharmaceutical Society of Korea, 42, 607–612.
  • Ko, Y. J., Oh, H. J., & Ahn, H. M. (2009). Flavonoids as potential inhibitors of retroviral enzymes. Journal of the Korean Society for Applied Biological Chemistry, 52(4), 321–326. https://doi.org/10.3839/jksabc.2009.057
  • Kong, L., Li, S., Liao, Q., Zhang, Y., Sun, R., Zhu, X., Zhang, Q., Wang, J., Wu, X., Fang, X., & Zhu, Y. (2013). Oleanolic acid and ursolic acid: novel hepatitis C virus antivirals that inhibit NS5B activity. Antiviral Research, 98(1), 44–53. https://doi.org/10.1016/j.antiviral.2013.02.003
  • Krogh, A., Larsson, B., Von Heijne, G., & Sonnhammer, E. L. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305(3), 567–580. https://doi.org/10.1006/jmbi.2000.4315
  • Kuzmanic, A., & Zagrovic, B. (2010). Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophysical Journal, 98(5), 861–871. https://doi.org/10.1016/j.bpj.2009.11.011
  • Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132. https://doi.org/10.1016/0022-2836(82)90515-0
  • Li, Y. L., Ma, S. C., Yang, Y. T., Ye, S. M., & But, P. P. (2002). Antiviral activities of flavonoids and organic acid from Trollius chinensis Bunge. Journal of Ethnopharmacology, 79(3), 365–368. https://doi.org/10.1016/s0378-8741(01)00410-x
  • Ling, A. P. K., Khoo, B. F., Seah, C. H., Foo, K. Y., Cheah, R. K., Chye, S. M., & Koh, R. Y. (2014). Inhibitory activities of methanol extracts of Andrographis paniculata and Ocimum sanctum against dengue-1 virus. In International Conference on Biological Environmental and Food Engineering, Bali, Indonesia, pp. 4–5.
  • Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265–D268. https://doi.org/10.1093/nar/gkz991
  • Lüthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85. https://doi.org/10.1038/356083a0
  • Martins, F. O., Esteves, P. F., Mendes, G. S., Barbi, N. S., Menezes, F. S., & Romanos, M. T. (2009). Verbascoside isolated from Lepechinia speciosa has inhibitory activity against HSV-1 and HSV-2 in vitro. Natural Products Communications. 4(12), 1693–1696.
  • Misteli, T. (2001). Protein dynamics: Implications for nuclear architecture and gene expression. Science (New York, N.Y.), 291(5505), 843–847. https://doi.org/10.1126/science.291.5505.843
  • Mitrocotsa, D., Mitaku, S., Axarlis, S., Harvala, C., & Malamas, M. (2000). Evaluation of the antiviral activity of kaempferol and its glycosides against human cytomegalovirus. Planta Medica, 66(4), 377–379. https://doi.org/10.1055/s-2000-8550
  • Morris, G. M., Huey, R., & Olson, A. J. (2008). Using AutoDock for ligand-receptor docking. Current Protocols in Bioinformatics, 24(1), 8.14.1–8.14.40. https://doi.org/10.1002/0471250953.bi0814s24
  • Mousavi, S. M., Hashemi, S. A., Behbudi, G., Mazraedoost, S., Omidifar, N., Gholami, A., Chiang, W.-H., Babapoor, A., & Pynadathu Rumjit, N. (2021). A review on health benefits of Malva sylvestris L. nutritional compounds for metabolites, antioxidants, and anti-inflammatory, anticancer, and antimicrobial applications. Evidence-Based Complementary and Alternative Medicine, 2021, 5548404. https://doi.org/10.1155/2021/5548404
  • Ou, C. B., Pan, Q., Chen, X., Hou, N., & He, C. (2012). Protocatechuic acid, a new active substance against the challenge of avian infectious bursal disease virus. Poultry Science, 91(7), 1604–1609. https://doi.org/10.3382/ps.2011-02069
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 1–14. https://doi.org/10.1186/1758-2946-3-33
  • Özçelik, B., Kartal, M., & Orhan, I. (2011). Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharmaceutical Biology, 49(4), 396–402. https://doi.org/10.3109/13880209.2010.519390
  • Petersen, M., & Simmonds, M. S. (2003). Jan Rosmarinic acid. Phytochemistry, 62(2), 121–125. https://doi.org/10.1016/s0031-9422(02)00513-7
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95–99. https://doi.org/10.1016/s0022-2836(63)80023-6
  • Rastelli, G., Pellati, F., Pinzi, L., & Gamberini, M. C. (2020). Repositioning natural products in drug discovery. Molecules, 25(5), 1154. https://doi.org/10.3390/molecules25051154
  • Rizk, J. G., Lippi, G., Henry, B. M., Forthal, D. N., & Rizk, Y. (2022). Prevention and treatment of monkeypox. Drugs, 82(9), 957–963. https://doi.org/10.1007/s40265-022-01742-y
  • Ryu, Y. B., Jeong, H. J., Kim, J. H., Kim, Y. M., Park, J.-Y., Kim, D., Nguyen, T. T. H., Park, S.-J., Chang, J. S., Park, K. H., Rho, M.-C., & Lee, W. S. (2010). Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorganic & Medicinal Chemistry, 18(22), 7940–7947. https://doi.org/10.1016/j.bmc.2010.09.035
  • Sahay, A., & Shakya, M. (2010). In silico analysis and homology modelling of antioxidant proteins of spinach. Journal of Proteomics & Bioinformatics, 3(5), 148–154. https://doi.org/10.4172/jpb.1000134
  • Seal, A., Aykkal, R., Babu, R. O., & Ghosh, M. (2011). Docking study of HIV-1 reverse transcriptase with phytochemicals. Bioinformation, 5(10), 430–439. https://doi.org/10.6026/97320630005430
  • Serkedjieva, J., Gegova, G., & Mladenov, K. (2008). Protective efficacy of an aerosol preparation, obtained from Geranium sanguineum L., in experimental influenza infection. Pharmazie, 63(2), 160–163.
  • Siddiqui, A. J., Danciu, C., Ashraf, S. A., Moin, A., Singh, R., Alreshidi, M., Patel, M., Jahan, S., Kumar, S., Alkhinjar, M. I. M., Badraoui, R., Snoussi, M., & Adnan, M. (2020). Plants-derived biomolecules as potent antiviral phytomedicines: New insights on ethnobotanical evidences against coronaviruses. Plants, 9(9), 1244. https://doi.org/10.3390/plants9091244
  • Sigrist, C. J. A., Cerutti, L., Hulo, N., Gattiker, A., Falquet, L., Pagni, M., Bairoch, A., & Bucher, P. (2002). PROSITE: A documented database using patterns and profiles as motif descriptors. Briefings in Bioinformatics, 3(3), 265–274. https://doi.org/10.1093/bib/3.3.265
  • Sigrist, C. J. A., De Castro, E., Cerutti, L., Cuche, B. A., Hulo, N., Bridge, A., Bougueleret, L., & Xenarios, I. (2013). New and continuing developments at PROSITE. Nucleic Acids Research, 41(Database issue), D344–D347. https://doi.org/10.1093/nar/gks1067
  • Stanilova, M. I., Ilcheva, V. P., & Zagorska, N. A. (1994). Morphogenetic potential and in vitro micropropagation of endangered plant species Leucojum aestivum L. and Lilium rhodopaeum Delip. Plant Cell Reports, 13(8), 451–453. https://doi.org/10.1007/BF00231965
  • Studio, D. (2008). Discovery studio. J Accelrys.
  • Surti, M., Patel, M., Adnan, M., Moin, A., Ashraf, S. A., Siddiqui, A. J., Snoussi, M., Deshpande, S., & Reddy, M. N. (2020). Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: Designing, docking and molecular dynamics simulation study. RSC Advances, 10(62), 37707–37720. https://doi.org/10.1039/d0ra06379g
  • Szlávik, L., Gyuris, A., Minárovits, J., Forgo, P., Molnár, J., & Hohmann, J. (2004). Alkaloids from Leucojum vernum and antiretroviral activity of Amaryllidaceae alkaloids. Planta Medica, 70(9), 871–873. https://doi.org/10.1055/s-2004-827239
  • UCLA. (2022).
  • Wang, G. F., Shi, L. P., Ren, Y. D., Liu, Q. F., Liu, H. F., Zhang, R. J., Li, Z., Zhu, F. H., He, P. L., Tang, W., Tao, P. Z., Li, C., Zhao, W. M., & Zuo, J. P. (2009). Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Research, 83(2), 186–190. https://doi.org/10.1016/j.antiviral.2009.05.002
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Wilkins, M. R., Gasteiger, E., Bairoch, A., Sanchez, J. C., Williams, K. L., Appel, R. D., & Hochstrasser, D. F. (1999). Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology (Clifton, N.J.), 112, 531–552.
  • Wright, G. D. (2019). Unlocking the potential of natural products in drug discovery. Microbial Biotechnology, 12(1), 55–57. https://doi.org/10.1111/1751-7915.13351
  • Wu, L. L., Yang, X. B., Huang, Z. M., Liu, H. Z., & Wu, G. X. (2007). In vivo and in vitro antiviral activity of hyperoside extracted from Abelmoschus manihot (L) medik. Acta Pharmacologica Sinica, 28(3), 404–409. https://doi.org/10.1111/j.1745-7254.2007.00510.x
  • Yan, R., Xu, D., Yang, J., Walker, S., & Zhang, Y. (2013). A comparative assessment and analysis of 20 representative sequence alignment methods for protein structure prediction. Scientific Reports, 3(1), 1–9. https://doi.org/10.1038/srep02619
  • Yang, C., Huang, X.-R., Fung, E., Liu, H.-F., & Lan, H.-Y. (2017). The regulatory T-cell transcription factor Foxp3 protects against crescentic glomerulonephritis. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-01515-8
  • Yim, E. K., Lee, M. J., Lee, K. H., Um, S. J., & Park, J. S. (2006). Antiproliferative and antiviral mechanisms of ursolic acid and dexamethasone in cervical carcinoma cell lines. International Journal of Gynecological Cancer: Official Journal of the International Gynecological Cancer Society, 16(6), 2023–2031. https://doi.org/10.1111/j.1525-1438.2006.00726.x
  • Zumla, A., Valdoleiros, S. R., Haider, N., Asogun, D., Ntoumi, F., Petersen, E., & Kock, R. (2022). Monkeypox outbreaks outside endemic regions: scientific and social priorities. The Lancet. Infectious Diseases, 22(7), 929-931. https://doi.org/10.1016/S1473-3099(22)00354-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.