118
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Design and simulation of a caprylic acid enzymatically modified phosphatidylcholine micelle using a coarse-grained molecular dynamics simulations approach

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 13902-13913 | Received 01 Oct 2022, Accepted 08 Feb 2023, Published online: 24 Feb 2023

References

  • ACD/ChemSketch. (2019). Version 2019.14.51, Advanced Chemistry Development, Inc., Toronto, ON, Canada, www.acdlabs.com.
  • Acevedo-Estupiñan, M. V., Gutierrez-Lopez, G. F., Cano-Sarmiento, C., Parra-Escudero, C. O., Rodriguez-Estrada, M. T., García-Varela, R., & García, H. S. (2019). Stability and characterization of O/W free phytosterols nanoemulsions formulated with an enzymatically modified emulsifier. LWT- Food Science and Technology, 107, 151–157. https://doi.org/10.1016/j.lwt.2019.03.004
  • Alimohammadi, E., Khedri, M., Miri Jahromi, A., Maleki, R., & Rezaian, M. (2020). Graphene-based nanoparticles as potential treatment options for parkinson’s disease: a molecular dynamics study. International Journal of Nanomedicine, ume 15, 6887–6903. https://doi.org/10.2147/IJN.S265140
  • Allen, D. T., & Lorenz, C. D. (2015). Molecular scale simulations of the self–assembly of amphiphilic molecules: Current state-of-the-art and future directions. Journal of Self-Assembly and Molecular Electronics, 3, 1–38.
  • Ang, X., Chen, H., Xiang, J. Q., Wei, F., & Quek, S. Y. (2019). Preparation and functionality of lipase-catalysed structured phospholipid: A review. Trends in Food Science & Technology, 88, 373–383. https://doi.org/10.1016/j.tifs.2019.04.005
  • Ashok, B., Arleth, L., Hjelm, R. P., Rubinstein, I., & Önyüksel, H. (2004). In Vitro Characterization of PEGylated Phospholipid micelles for improver drug solubilization: Effect of PEG chain length and PC incorporation. Journal of Pharmaceutical Sciences, 93(10), 2476–2487. https://doi.org/10.1002/jps.20150
  • Baeza-Jimenez, R., González-Rodriguez, J., Kim, I.-H., García, H. S., & Otero, C. (2012). Use of immobilized phospholipase A1-catalyzed acidolysis for the production of structured phosphatidylcholine with an elevated conjugated linoleic acid content. Grasas y Aceites, 63(1), 44–52.
  • Baeza-Jimenez, R., López-Martinez, L. X., & García, H. S. (2014). Biocatalytic modification of food lipids: Reactions and applications. Revista Mexicana de Ingeniería Química, 13(1), 29–47.
  • Baeza-Jimenez, R., Noriega-Rodriguez, J. A., García, H. S., & Otero, C. (2012). Structured phosphatidylcholine with elevated content of conjugated linoleic acid: Optimization by response surface methodology. European Journal of Lipid Science and Technology, 114(11), 1261–1267. https://doi.org/10.1002/ejlt.201200038
  • Brocos, P., Mendoza-Espinosa, P., Castillo, R., Mas-Oliva, J., & Piñeiro, Á. (2012). Multiscale molecular dynamics simulations of micelles: coarse-grain for self-assembly and atomic resolution for finer details. Soft Matter. 8(34), 9005. https://doi.org/10.1039/c2sm25877c
  • Cao, W., Zhang, K., Tao, G., Wang, X., & Liu, Y. (2012). Identification of the fatty acyl residues composition and molecular species of phosphatidylcholines in soy lecithin powder by UPLC–ESI-MS/MS. Cromatographia, 75(21-22), 1271–1278. https://doi.org/10.1007/s10337-012-2309-2
  • Cavazos-Garduño, A., Ochoa Flores, A. A., Serrano-Niño, J. C., Martínez-Sanchez, C. E., Beristain, C. I., & García, H. S. (2015). Preparation of betulinic acid nanoemulsions stabilized by omega-3 enriched phosphatidylcholine. Ultrasonics Sonochemistry, 24, 204–213. https://doi.org/10.1016/j.ultsonch.2014.12.007
  • Chatzidaki, M. D., Papavasileiou, K. D., Papadopoulos, M. G., & Xenakis, A. (2017). Reverse micelles as antioxidant carriers: An experimental and molecular dynamics study. Langmuir, 22, 5077–5085.
  • Chávez-Zamudio, R., Ochoa-Flores, A. A., Soto-Rodriguez, I., García-Varela, R., & García, H. S. (2017). Preparation, characterization and bioavailability by oral administration of O/W curcumin nanoemulsions stabilized with lysophosphatidylcholine. Food & Function, 8(9), 3346–3354. https://doi.org/10.1039/C7FO00933J
  • Chng, C. P. (2013). Effect of simulation temperature on phospholipid bilayer–vesicle transition studied by coarse-grained molecular dynamics simulations. Soft Matter. 9(30), 7294–7301. https://doi.org/10.1039/c3sm51038g
  • DeLano, W. L. (2002). PyMOL. DeLano Scientific.
  • Egger, D., Wehtje, E., & Adlercreutz, P. (1997). Characterization and optimization of phospholipase A2 catalyzed synthesis of phosphatidylcholine. Biochimica et Biophysica Acta, 1343(1), 76–84.
  • Ehsan, A., Arash, N., Mohammad, K., Milad, R., Ahnmad, M., Nima, R., & Reza, M. (2021). Potential treatment of Parkinson’s disease using new-generation carbon nanotubes: a biomolecular in silico study. Future Medicine, 16(3)
  • Faramarzi, S., Bonnett, B., Scaggs, C. A., Hoffmaster, A., Grodi, D., Harvey, E., & Mertz, B. (2017). Molecular dynamics simulations as a tool for accurate determination of surfactant micelle properties. Langmuir : The ACS Journal of Surfaces and Colloids, 33(38), 9934–9943. https://doi.org/10.1021/acs.langmuir.7b02666
  • Fujiwara, T., Ritchie, K., Murakoshi, H., Jacob, K., & Kusumi, A. (2002). Phospholipids undergo hop diffusion in compartmentalized cell membrane. The Journal of Cell Biology, 157(6), 1071–1081. https://doi.org/10.1083/jcb.200202050
  • García, H. S., Kim, I.-H., López-Hernandez, A., & Hill, C. G. Jr., (2008). Enrichment of lecithin with n-3 fatty acids by acidolysis using immobilized phospholipase A1. Grasas y Aceites, 59(4), 368–374. https://doi.org/10.3989/gya.2008.v59.i4.531
  • Gazolu.Rusanova, D., Mustan, F., Vinarov, Z., Tcholakova, S., Denkov, N., Stoyanov, S., & Folter, J. W. (2020). Role of lysophospholipids on the interfacial and liquid film properties of enzymatically modified egg yolk solutions. Food Hydrocolloids. 99, 105319. https://doi.org/10.1016/j.foodhyd.2019.105319
  • Gupta, S., De Mel, J. U., Perera, R. M., Zolnierczuk, P., Bleuel, M., Faraone, A., & Schneider, G. J. (2018). Dynamics of phospholipid membranes beyond thermal undulations. The Journal of Physical Chemistry Letters, 9(11), 2956–2960. https://doi.org/10.1021/acs.jpclett.8b01008
  • Hashemzadeh, H., Javadi, H., & Darvishi, M. H. (2020). Study of structural stability and formation mechanisms in DSPC and DPSM liposomes: A coarse-grained molecular dynamics simulation. Scientific Reports, 10(1), 1837. https://doi.org/10.1038/s41598-020-58730-z
  • Hossain, M. S., Berg, S., Bergström, C. A. S., & Larsson, P. (2019). Aggregation behavior of medium chain fatty acids studied by coarse-grained molecular dynamics simulation. AAPS PharmSciTech, 20(2), 61. https://doi.org/10.1208/s12249-018-1289-4
  • Hudiyanti, D., Radifar, M., Raharjo, T. J., Narsito, N., & Noegrohati, S. (2014). A coarse-grained molecular dynamics simulation using NAMD package to reveal aggregation profile of phospholipids self-assembly in water. Journal of Chemistry, 6(2014)
  • Israelachvili, J. N. (2011). Intermolecular and surface forces (3rd ed). Academic Press.
  • Kamrani, S. M. E., & Hadizadeh, F. (2019). A coarse-grain MD (molecular dynamic) simulation of PCL–PEG and PLA–PEG aggregation as a computational model for prediction of the drug-loading efficacy of doxorubicin. Journal of Biomolecular Structure and Dynamics, 37(16), 4215–4221. https://doi.org/10.1080/07391102.2018.1541762
  • Kiessling, V., Crane, J., & Tamm, L. (2006). Transbilayer. Effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking. Biophysical Journal, 91(9), 3313–3326. https://doi.org/10.1529/biophysj.106.091421
  • Kim, I.-H., García, H. S., & Hill, C. G. Jr., (2010). Synthesis of structured phosphatidylcholine containing n-3 PUFA residues via acidolysis mediated by immobilized phospholipase A1. Journal of the American Oil Chemists’ Society, 87(11), 1293–1299. https://doi.org/10.1007/s11746-010-1609-7
  • Koshiyama, K., Taneo, M., Shigematsu, T., & Wada, S. (2019). Bicelle-to-vesicle transition of a binary phospholipid mixture guided by controlled local lipid compositions: A molecular dynamics simulation study. The Journal of Physical Chemistry. B, 123(14), 3118–3123. https://doi.org/10.1021/acs.jpcb.8b10682
  • Lange, N., Leermakers, F. A. M., & Kleijn, J. M. (2020). Self-limiting aggregation of phospholipid vesicles. Soft Matter. 16(9), 2379–2389. https://doi.org/10.1039/c9sm01692a
  • Lebecque, S., Crowet, J. M., Nasir, M. N., Deleu, M., & Lins, L. (2017). Molecular dynamics study of micelles properties according to their size. Journal of Molecular Graphics and Modeling, 72, 6–15. https://doi.org/10.1016/j.jmgm.2016.12.007
  • Levi, V., & Gratton, E. (2007). Exploring dynamics in living cells by tracking single particles. Cell Biochemistry and Biophysics, 48(1), 1–15. https://doi.org/10.1007/s12013-007-0010-0
  • Li, W., Du, W., Li, Q., Sun, T., & Liu, D. (2010). Study on acyl migration kinetics of partial glycerides: Dependence on temperature and water activity. Journal of Molecular Catalysis B: Enzymatic, 63(1–2), 17–22. https://doi.org/10.1016/j.molcatb.2009.11.012
  • Li, W., Li, R. W., Li, Q., Du, W., & Liu, D. (2010). Acyl migration and kinetics study of 1(3)-positional specific lipase of Rhizopus oryzae-catalyzed methanolysis of triglyceride for biodiesel production. Process Biochemistry, 45(12), 1888–1893. https://doi.org/10.1016/j.procbio.2010.03.034
  • Lin, M. H., Hung, C. F., Aljuffali, I. A., Sung, C. T., Huang, C. T., & Fang, J. Y. (2017). Cationic amphiphile in phospholipid bilayer or oil–water interface of nanocarriers affects planktonic and biofilm bacteria killing. Nanomedicine : nanotechnology, Biology, and Medicine, 13(2), 353–361. https://doi.org/10.1016/j.nano.2016.08.011
  • Lordan, R., Tsoupras, A., & Zabetakis, I. (2017). Phospholipids of animal and marine origin: Structure, function, and anti-inflammatory properties. Molecules, 22(11), 1964. https://doi.org/10.3390/molecules22111964
  • Manikandan, A., Divakar, D., & Poonam, S. N. (2019). Phospholipid-the dynamic structure between living and non-living world; a much obligatory supramolecule for present and future. AIMS Molecular Science, 6(1), 1–19.
  • Marrink, S. J., de Vries, A. H., & Mark, A. E. (2004). Coarse grained model for semi-quantitative lipid simulations. The Journal of Physical Chemistry B, 108(2), 750–760. https://doi.org/10.1021/jp036508g
  • Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, P. D., & Vries, A. H. (2007). The MARTINI force field: Coarse grained model for biomolecular simulations. The Journal of Physical Chemistry B, 111(27), 7812–7824. https://doi.org/10.1021/jp071097f
  • McClements, D. J., & Gumus, C. E. (2016). Natural emulsifier-biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Advances in Colloid and Interface Science, 234, 3–26. https://doi.org/10.1016/j.cis.2016.03.002
  • National Center for Biotechnology Information. (2018). PubChem substance record for SID 162093584, Source: Chembase.cn. Retrieved September 25, from https://pubchem.ncbi.nlm.nih.gov/substance/162093584.
  • Niezgoda, N., & Gliszczyńska, A. (2019). Lipase catalyzed acidolysis for efficient synthesis of phospholipids enriched with isomerically pure cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid. Catalyst, 9(12), 1012. https://doi.org/10.3390/catal9121012
  • Ochoa-Flores, A. A., Hernández-Becerra, J. A., Cavazos-Garduño, A., Vernon-Carter, E. J., & García, H. S. (2017). Optimization of the synthesis of structured phosphatidylcholine with medium chain fatty acid. Journal of Oleo Science, 66(11), 1207–1215. https://doi.org/10.5650/jos.ess17087
  • Ochoa-Flores, A. A., Hernández-Becerra, J. A., Cavazos-Garduño, A., García, H. S., & Vernon-Carter, E. J. (2013). Phosphatidylcholine enrichment with medium chain fatty acids by immobilized phospholipase A1‐catalyzed acidolysis. Biotechnology Progress, 29, 1.
  • Palazzesi, F., Calvaresi, M., & Zerbetto, F. (2011). A molecular dynamics investigation of structure and dynamics of SDS and SDBS micelles. Soft Matter. 7(19), 9148. https://doi.org/10.1039/c1sm05708a
  • Patist, A., Bhagwat, S. S., Penfield, K. W., Aikens, P., & Shah, D. O. (2000). On the Measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants. Journal of Surfactants and Detergents, 3(1), 53–58. https://doi.org/10.1007/s11743-000-0113-4
  • Pires, J. M., Moura, A. F. D., & Freitas, L. C. G. (2012). Investigating the spontaneous formation of sds micelle in aqueous solution using a coarse-grained force field. Química Nova, 35(5), 978–981. https://doi.org/10.1590/S0100-40422012000500021
  • Reza, M., & Mohammad, A. (2021). Simultaneous doxorubicin encapsulation and in-situ microfluidic micellization of bio-targeted polymeric nanohybrids using dichalcogenide monolayers: A molecular in-silico study. Materials Today Communications, 26, 101948.
  • Rui, M. C., & Dias, R. (2007). Prediction of mean square radius of gyration of tree-like polymers by a general kinetic approach. Polymers, 1785–1801.
  • Sanders, S. A., & Panagiotopoulos, A. Z. (2010). Micellization behavior of coarse-grained surfactant model. The Journal of Chemical Physics, 132(11), 114902. https://doi.org/10.1063/1.3358354
  • Sangwai, A. V., & Sureshkumar, R. (2011). Coarse-grained molecular dynamics simulations of the sphere to rod transition in surfactant micelles. Langmuir : The ACS Journal of Surfaces and Colloids, 27(11), 6628–6638. https://doi.org/10.1021/la2006315
  • Silva, R. C., Soares, F., Hazzan, M., Capacla, R. I., Goncalves, A. M., & Gioielli, L. A. (2012). Continuous enzymatic interesterification of lard and soybean oil blend: Effects of different flow rates on physical properties and acyl migration. Journal of Molecular Catalysis B: Enzymatic, 23–28.
  • Singh, R. P., Gangadharappa, H. V., & Mruthunjaya, K. (2017). Phospholipids: Unique carriers for drug delivery systems. Journal of Drug Delivery Science and Technology, 39, 166–179. https://doi.org/10.1016/j.jddst.2017.03.027
  • Sou, K., Endo, T., Takeoka, S., & Tsuchida, E. (2000). Poly (ethylene glycol)- modification of the phospholipid vesicle by using the spontaneous incorporation of poly (ethylene glycol)- lipid into the vesicle. Bioconjugate Chemistry, 11(3), 372–379. https://doi.org/10.1021/bc990135y
  • Stadler, A. M., Garvey, C. J., Bocahut, A., Sacquin-Mora, S., Digel, I., Schneider, G. J., Natali, F., Artmann, G. M., & Zaccai, G. (2012). Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics. Journal of the Royal Society Interface, 9(76), 2845–2855. https://doi.org/10.1098/rsif.2012.0364
  • Tai, K., Liu, F., He, X., Ma, P., Mao, L., Gao, Y., & Yuan, F. (2018). The effect of sterol derivatives on properties of soybean and egg yolk lecithin liposomes: Stability, structure and membrane characteristics. Food Research International, 109, 24–34. https://doi.org/10.1016/j.foodres.2018.04.014
  • Tieleman, D. P., Spoel, D. V., & Berendsen, J. C. (2000). Molecular dynamics simulations of dodecylphosphocholine micelles at three different Aggregate Sizes: Micellar structure and chain relaxation. The Journal of Physical Chemistry B, 104(27), 6380–6388. https://doi.org/10.1021/jp001268f
  • Trujillo, M., & Schramm, M. P. (2010). Measuring critical micelle concentration as a funtion of cavitand additives using surface tension and dye micellization. Ronald E McNair Postbaccalaureate Achievement Program, 14, 155–168.
  • Verdasco-Martin, C. M., Corchado-Lopo, C., Fernández-Lafuente, R., & Otero, C. (2019). Rapid and high yield production of phospholipids enriched in CLA via acidolysis: The critical role of the enzyme immobilization protocol. Food Chemistry, 296, 123–131. https://doi.org/10.1016/j.foodchem.2019.05.107
  • Yang, T., Fruekilde, M. B., & Xu, X. (2005). Suppression of acyl migration in enzymatic production of structured lipids through temperature programming. Food Chemistry, 92(1), 101–107. https://doi.org/10.1016/j.foodchem.2004.07.007
  • Zhang, J., Yang, S., Cai, W., Yin, F., Jia, J., Zhou, D., & Zhu, B. (2019). Efficient production of medium-chain structured phospholipids over mesoporous organosulfonic acid-functionalized SBA-15 catalysts. Catalyst, 9(9), 770. https://doi.org/10.3390/catal9090770
  • Zhao, T., No, D. S., Kim, B. H., García, H. S., Kim, Y., & Kim, I.-H. (2014). Immobilized phospholipase A1-catalyzed modification of phosphatidylcholine with n − 3 polyunsaturated fatty acid. Food Chemistry, 157, 132–140. https://doi.org/10.1016/j.foodchem.2014.02.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.