84
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Vibrational spectroscopy simulation of solvation effects on a G-quadruplex

, , &
Pages 14248-14258 | Received 26 Oct 2022, Accepted 07 Feb 2023, Published online: 01 Mar 2023

References

  • Adam, S.-J., Grand Cory, L., Bearss David, J., & Hurley Laurence, H. (2002). Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proceedings of the National Academy of Sciences of the United States of America, 99(18), 11593–11598. https://doi.org/10.1073/pnas.182256799
  • Aieta, C., Micciarelli, M., Bertaina, G., & Ceotto, M. (2020). Anharmonic quantum nuclear densities from full dimensional vibrational eigenfunctions with application to protonated glycine. Nature Communications, 11(1), 9. https://doi.org/10.1038/s41467-020-18211-3
  • Asami, H., Urashima, S-h., & Saigusa, H. (2009). Hydration structures of 2'-deoxyguanosine studied by IR-UV double resonance spectroscopy: Comparison with guanosine. Physical Chemistry Chemical Physics : PCCP, 11(44), 10466–10472. https://doi.org/10.1039/b912684h
  • Beeman, D. (1976). Some multistep methods for use in molecular dynamics calculations. Journal of Computational Physics, 20(2), 130–139. https://doi.org/10.1016/0021-9991(76)90059-0
  • Begusic, T., Tapavicza, E., & Vanicek, J. (2022). Applicability of the Thawed Gaussian wavepacket dynamics to the calculation of vibronic spectra of molecules with double-well potential energy surfaces. Journal of Chemical Theory and Computation, 18(5), 3065–3074. https://doi.org/10.1021/acs.jctc.2c00030
  • Begusic, T., & Vanicek, J. (2020). On-the-fly ab initio semiclassical evaluation of third-order response functions for two-dimensional electronic spectroscopy.The Journal of Chemical Physics, 153, 184110.
  • Begusic, T., & Vanicek, J. (2021). Finite-Temperature, Anharmonicity, and Duschinsky Effects on the Two-Dimensional Electronic Spectra from Ab Initio Thermo-Field Gaussian Wavepacket Dynamics.The Journal of Physical Chemistry Letters, 12, 2997–3005.
  • Bertaina, G., Di Liberto, G., & Ceotto, M. (2019). Reduced rovibrational coupling Cartesian dynamics for semiclassical calculations: Application to the spectrum of the Zundel cation. The Journal of Chemical Physics, 151(11), 114307. https://doi.org/10.1063/1.5114616
  • Bonnet, L. (2020). Semiclassical initial value representation: From Møller to Miller. The Journal of Chemical Physics, 153(17), 174102. https://doi.org/10.1063/5.0023137
  • Bonnet, L. (2021). Semiclassical descriptions of rotational transitions in natural and shifted angles: Analysis of unexpected results. The Journal of Chemical Physics, 155(17), 174103. https://doi.org/10.1063/5.0071227
  • Cazzaniga, M., Micciarelli, M., Gabas, F., Finocchi, F., & Ceotto, M. (2022). Quantum anharmonic calculations of vibrational spectra for water adsorbed on Titania Anatase(101) surface: Dissociative versus molecular adsorption. The Journal of Physical Chemistry. C, Nanomaterials and Interfaces, 126(29), 12060–12073. https://doi.org/10.1021/acs.jpcc.2c02137
  • Cazzaniga, M., Micciarelli, M., Moriggi, F., Mahmoud, A., Gabas, F., & Ceotto, M. (2020). Anharmonic calculations of vibrational spectra for molecular adsorbates: A divide-and-conquer semiclassical molecular dynamics approach. The Journal of Chemical Physics, 152(10), 104104. https://doi.org/10.1063/1.5142682
  • Ceotto, M., Atahan, S., Tantardini, G. F., & Aspuru-Guzik, A. (2009). Multiple coherent states for first-principles semiclassical initial value representation molecular dynamics. The Journal of Chemical Physics, 130(23), 234113. https://doi.org/10.1063/1.3155062
  • Ceotto, M., Di Liberto, G., & Conte, R. (2017). Semiclassical "Divide-and-Conquer" method for spectroscopic calculations of high dimensional molecular systems. Physical Review Letters, 119(1), 010401. https://doi.org/10.1103/PhysRevLett.119.010401
  • Ceotto, M., Zhuang, Y., & Hase, W. L. (2013). Accelerated direct semiclassical molecular dynamics using a compact finite difference Hessian scheme. The Journal of Chemical Physics, 138(5), 054116. https://doi.org/10.1063/1.4789759
  • Choi, M. Y., & Miller, R. E. (2006). Four tautomers of isolated guanine from infrared laser spectroscopy in helium nanodroplets. Journal of the American Chemical Society, 128(22), 7320–7328. https://doi.org/10.1021/ja060741l
  • Church, M. S., & Ananth, N. (2019). Semiclassical dynamics in the mixed quantum-classical limit. The Journal of Chemical Physics, 151(13), 134109. https://doi.org/10.1063/1.5117160
  • Church, M. S., Antipov, S. V., & Ananth, N. (2017). Validating and implementing modified Filinov phase filtration in semiclassical dynamics. The Journal of Chemical Physics, 146(23), 234104. https://doi.org/10.1063/1.4986645
  • Church, M. S., Hele, T. J., Ezra, G. S., & Ananth, N. (2018). Nonadiabatic semiclassical dynamics in the mixed quantum-classical initial value representation. The Journal of Chemical Physics, 148(10), 102326. https://doi.org/10.1063/1.5005557
  • Cogoi, S., & Xodo, L. E. (2006). G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acids Research, 34(9), 2536–2549. https://doi.org/10.1093/nar/gkl286
  • Conte, R., & Ceotto, M. (2020). Semiclassical molecular dynamics for spectroscopic Calculations (pp. 595–628). Wiley Online Books.
  • Conte, R., Gabas, F., Botti, G., Zhuang, Y., & Ceotto, M. (2019). Semiclassical vibrational spectroscopy with Hessian databases. The Journal of Chemical Physics, 150(24), 244118. https://doi.org/10.1063/1.5109086
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N ⋅log(N) method for Ewald sums in large systems. Journal of Chemical Physics. 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Di Fonzo, S., Amato, J., D'Aria, F., Caterino, M., D'Amico, F., Gessini, A., Brady, J. W., Cesàro, A., Pagano, B., & Giancola, C. (2020). Ligand binding to G-quadruplex DNA: New insights from ultraviolet resonance Raman spectroscopy. Physical Chemistry Chemical Physics : PCCP, 22(15), 8128–8140. https://doi.org/10.1039/d0cp01022g
  • Di Liberto, G., Conte, R., & Ceotto, M. (2018). Divide and conquer" semiclassical molecular dynamics: A practical method for spectroscopic calculations of high dimensional molecular systems. The Journal of Chemical Physics, 148(1), 014307. https://doi.org/10.1063/1.5010388
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. Journal of Chemical Physics. 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Fraschetti, C., Montagna, M., Guarcini, L., Guidoni, L., & Filippi, A. (2014). Spectroscopic evidence for a gas-phase librating G-quartet-Na(+) complex. Chemical Communications (Cambridge, England), 50(94), 14767–14770. https://doi.org/10.1039/c4cc05149a
  • Friedman, S. J., & Terentis, A. C. (2016). Analysis of G-quadruplex conformations using Raman and polarized Raman spectroscopy. Journal of Raman Spectroscopy, 47(3), 259–268. https://doi.org/10.1002/jrs.4823
  • Gabas, F., Conte, R., & Ceotto, M. (2020). Semiclassical vibrational spectroscopy of biological molecules using force fields. Journal of Chemical Theory and Computation, 16(6), 3476–3485. https://doi.org/10.1021/acs.jctc.0c00127
  • Gabas, F., Conte, R., & Ceotto, M. (2022). Quantum vibrational spectroscopy of explicitly solvated thymidine in semiclassical approximation. The Journal of Physical Chemistry Letters, 13(5), 1350–1355. https://doi.org/10.1021/acs.jpclett.1c04087
  • Gabas, F., Di Liberto, G., & Ceotto, M. (2019). Vibrational investigation of nucleobases by means of divide and conquer semiclassical dynamics. The Journal of Chemical Physics, 150(22), 224107. https://doi.org/10.1063/1.5100503
  • Gabas, F., Di Liberto, G., Conte, R., & Ceotto, M. (2018). Protonated glycine supramolecular systems: the need for quantum dynamics. Chemical Science, 9(41), 7894–7901. https://doi.org/10.1039/c8sc03041c
  • Gandolfi, M., & Ceotto, M. (2021). Unsupervised machine learning neural gas algorithm for accurate evaluations of the Hessian matrix in molecular dynamics. Journal of Chemical Theory and Computation, 17(11), 6733–6746. https://doi.org/10.1021/acs.jctc.1c00707
  • Gandolfi, M., Rognoni, A., Aieta, C., Conte, R., & Ceotto, M. (2020). Machine learning for vibrational spectroscopy via divide-and-conquer semiclassical initial value representation molecular dynamics with application to N-methylacetamide. The Journal of Chemical Physics, 153(20), 204104. https://doi.org/10.1063/5.0031892
  • Grossmann, F. (2006). A semiclassical hybrid approach to many particle quantum dynamics. The Journal of Chemical Physics, 125(1), 014111. https://doi.org/10.1063/1.2213255
  • Gualerzi, A., Picciolini, S., Carlomagno, C., Rodà, F., & Bedoni, M. (2021). Biophotonics for diagnostic detection of extracellular vesicles. Advanced Drug Delivery Reviews, 174, 229–249. https://doi.org/10.1016/j.addr.2021.04.014
  • Guiblet, W. M., DeGiorgio, M., Cheng, X., Chiaromonte, F., Eckert, K. A., Huang, Y.-F., & Makova, K. D. (2021). Selection and thermostability suggest G-quadruplexes are novel functional elements of the human genome. Genome Research, 31(7), 1136–1149. https://doi.org/10.1101/gr.269589.120
  • Hansel-Hertsch, R., Di Antonio, M., & Balasubramanian, S. (2017). DNA G-quadruplexes in the human genome: Detection, functions and therapeutic potential. Nature Reviews. Molecular Cell Biology, 18(5), 279–284. https://doi.org/10.1038/nrm.2017.3
  • Heller, E. J. (1981). Frozen Gaussians: A very simple semiclassical approximation. Journal of Chemical Physics. 75(6), 2923–2931. https://doi.org/10.1063/1.442382
  • Hoogsteen, K. (1963). The crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine. Acta Crystallographica, 16(9), 907–916. https://doi.org/10.1107/S0365110X63002437
  • Ivanov, A. Y. (2010). Conformations of ribonucleoside uridine in the low temperature Ar matrices. Low Temperature Physics, 36(5), 458–464. https://doi.org/10.1063/1.3432264
  • Ivanov, A. Y., Rubin, Y. V., Egupov, S. A., Belous, L. F., & Karachevtsev, V. A. (2015). The conformational structure of adenosine molecules, isolated in low-temperature Ar matrices. Low Temperature Physics, 41(11), 936–941. https://doi.org/10.1063/1.4937173
  • Ivanov, A. Y., Stepanian, S. G., Karachevtsev, V. A., & Adamowicz, L. (2019). Nucleoside conformers in low-temperature argon matrices: Fourier transform IR spectroscopy of isolated thymidine and deuterothymidine molecules and quantum-mechanical calculations. Low Temperature Physics, 45(9), 1008–1017. https://doi.org/10.1063/1.5121271
  • Kay, K. G. (2006). The Herman–Kluk approximation: Derivation and semiclassical corrections. Chemical Physics 322, 3–12. https://doi.org/10.1016/j.chemphys.2005.06.019
  • Kelly, R. E. A., Lee, Y. J., & Kantorovich, L. N. (2005). Homopairing possibilities of the DNA bases cytosine and guanine: An ab initio DFT study. The Journal of Physical Chemistry. B, 109(46), 22045–22052. https://doi.org/10.1021/jp055207z
  • Krafft, C., Benevides, J. M., Thomas, J., & George, J. (2002). Secondary structure polymorphism in Oxytricha nova telomeric DNA. Nucleic Acids Research, 30(18), 3981–3991. https://doi.org/10.1093/nar/gkf517
  • Larregaray, P., & Bonnet, L. (2021). Including tunneling into the classical cross sections and rate constants for the N(2D) + H2 (v = 0, j = 0) reaction. Theoretical Chemistry Accounts, 140(6), 1–7. https://doi.org/10.1007/s00214-021-02749-6
  • Levine, B. G., Stone, J. E., & Kohlmeyer, A. (2011). Fast analysis of molecular dynamics trajectories with graphics processing units-radial distribution function histogramming. Journal of Computational Physics, 230(9), 3556–3569. https://doi.org/10.1016/j.jcp.2011.01.048
  • Lipparini, F., & Mennucci, B. (2021). Hybrid QM/classical models: Methodological advances and new applications. Chemical Physics Reviews, 2(4), 041303. https://doi.org/10.1063/5.0064075
  • Lipps, H. J., & Rhodes, D. (2009). G-quadruplex structures: In vivo evidence and function. Trends in Cell Biology, 19(8), 414–422. https://doi.org/10.1016/j.tcb.2009.05.002
  • Liu, G., Du, W., Sang, X., Tong, Q., Wang, Y., Chen, G., Yuan, Y., Jiang, L., Cheng, W., Liu, D., Tian, Y., & Fu, X. (2022). RNA G-quadruplex in TMPRSS2 reduces SARS-CoV-2 infection. Nature Communications, 13(1), 1444. https://doi.org/10.1038/s41467-022-29135-5
  • Macaluso, V., Hashem, S., Nottoli, M., Lipparini, F., Cupellini, L., & Mennucci, B. (2021). Ultrafast transient infrared spectroscopy of photoreceptors with polarizable QM/MM dynamics. The Journal of Physical Chemistry. B, 125(36), 10282–10292. https://doi.org/10.1021/acs.jpcb.1c05753
  • Malpathak, S., Church, M. S., & Ananth, N. (2022). The Journal of Physical Chemistry A, 126(37), 6359–6375. https://doi.org/10.1021/acs.jpca.2c03467
  • Mergny, J.-L., Phan, A.-T., & Lacroix, L. (1998). Following G-quartet formation by UV-spectroscopy. FEBS Letters, 435(1), 74–78. https://doi.org/10.1016/s0014-5793(98)01043-6
  • Miller, W. H. (1974). Classical-limit quantum mechanics and the theory of molecular collisions. Advances in Chemical Physics, 25, 69–177.
  • Miller, W. H. (2001). The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations. The Journal of Physical Chemistry A, 105(13), 2942–2955. https://doi.org/10.1021/jp003712k
  • Miller, W. H. (2005). Quantum dynamics of complex molecular systems. Proceedings of the National Academy of Sciences of the United States of America, 102(19), 6660–6664. https://doi.org/10.1073/pnas.0408043102
  • Mohanty, B. K., Karam, J. A. Q., Howley, B. V., Dalton, A. C., Grelet, S., Dincman, T., Streitfeld, W. S., Yoon, J.-H., Balakrishnan, L., Chazin, W. J., Long, D. T., & Howe, P. H. (2021). Heterogeneous nuclear ribonucleoprotein E1 binds polycytosine DNA and monitors genome integrity. Life Science Alliance, 4(9), e202000995. https://doi.org/10.26508/lsa.202000995
  • Mondragon-Sanchez, J. A., Liquier, J., Shafer, R. H., & Taillandier, E. null (2004). Tetraplex structure formation in the thrombin-binding DNA aptamer by metal cations measured by vibrational spectroscopy. Journal of Biomolecular Structure & Dynamics, 22(3), 365–373. https://doi.org/10.1080/07391102.2004.10507008
  • Musumeci, D., Riccardi, C., & Montesarchio, D. (2015). G-Quadruplex Forming Oligonucleotides as Anti-HIV Agents. Molceules, 20(9), 17511-17532. https://doi.org/10.3390/molecules200917511
  • Neidle, S. (2016). Quadruplex nucleic acids as novel therapeutic targets. Journal of Medicinal Chemistry, 59(13), 5987–6011. https://doi.org/10.1021/acs.jmedchem.5b01835
  • Oh, H.-B., Lin, C., Hwang, H. Y., Zhai, H., Breuker, K., Zabrouskov, V., Carpenter, B. K., & McLafferty, F. W. (2005). Infrared photodissociation spectroscopy of electrosprayed ions in a Fourier transform mass spectrometer. Journal of the American Chemical Society, 127(11), 4076–4083. https://doi.org/10.1021/ja040136n
  • Pagba, C. V., Lane, S. M., & Wachsmann-Hogiu, S. (2010). Raman and surface-enhanced Raman spectroscopic studies of the 15-mer DNA thrombin-binding aptamer. Journal of Raman Spectroscopy. 41, 241–247.
  • Paramasivan, S., Rujan, I., & Bolton, P. H. (2007). Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding. Methods (San Diego, Calif.), 43(4), 324–331. https://doi.org/10.1016/j.ymeth.2007.02.009
  • Perrone, R., Nadai, M., Frasson, I., Poe, J. A., Butovskaya, E., Smithgall, T. E., Palumbo, M., Palu, G., & Richter, S. N. (2013). A dynamic G-quadruplex region regulates the HIV-1 long terminal repeat promoter. Journal of Medicinal Chemistry, 56(16), 6521–6530. https://doi.org/10.1021/jm400914r
  • Pollak, E. (2007). Quantum dynamics of complex molecular systems (pp. 259–271). Springer.
  • Rackers, J., Wang, Z., Lu, C., Laury, M. L., Lagardere, L., Schnieders, M. J., Piquemal, J.-P., Ren, P., & Ponder, J. W. (2018). Tinker 8: Software tools for molecular design. Journal of Chemical Theory and Computation, 14(10), 5273–5289. https://doi.org/10.1021/acs.jctc.8b00529
  • Rankin, S., Reszka, A. P., Huppert, J., Zloh, M., Parkinson, G. N., Todd, A. K., Ladame, S., Balasubramanian, S., & Neidle, S. (2005). Putative DNA quadruplex formation within the human c-kit oncogene. Journal of the American Chemical Society, 127(30), 10584–10589. https://doi.org/10.1021/ja050823u
  • Rhodes, D., & Lipps, H. (2015). G-quadruplexes and their regulatory roles in biology. Nucleic Acids Research, 43(18), 8627–8637. https://doi.org/10.1093/nar/gkv862
  • Ruggiero, E., Zanin, I., Terreri, M., & Richter, S. N. (2021). G-Quadruplex targeting in the fight against viruses: An update. Int. J. Mol. Sci., 22(20), 10984. https://doi.org/10.3390/ijms222010984
  • Setvin, M., Buchholz, M., Hou, W., Zhang, C., Stöger, B., Hulva, J., Simschitz, T., Shi, X., Pavelec, J., Parkinson, G. S., Xu, M., Wang, Y., Schmid, M., Wöll, C., Selloni, A., & Diebold, U. (2015). A multitechnique study of CO adsorption on the TiO2 anatase (101) surface. The Journal of Physical Chemistry C, 119(36), 21044–21052. https://doi.org/10.1021/acs.jpcc.5b07999
  • Sieranski, T. (2020). Energy, orbital and structural stacking landscape of a purine homodimer system. Theoretical Chemistry Accounts, 139, 153.
  • Sponer, J., Mladek, A., Spackova, N., Cang, X., Cheatham, T. E., & Grimme, S. (2013). Relative stability of different DNA guanine quadruplex stem topologies derived using large-scale quantum-chemical computations. Journal of the American Chemical Society, 135(26), 9785–9796. https://doi.org/10.1021/ja402525c
  • Vanicek, J., & Begusic, T. (2021). Molecular spectroscopy and quantum dynamics. 199–229.
  • Wu, R., & McMahon, T. B. (2007). Infrared multiple photon dissociation spectra of proline and glycine proton-bound homodimers. Evidence for zwitterionic structure. Journal of the American Chemical Society, 129(16), 4864–4865. https://doi.org/10.1021/ja068715a
  • Xu, M., Gao, Y., Moreno, E. M., Kunst, M., Muhler, M., Wang, Y., Idriss, H., & Woll, C. (2011). Photocatalytic activity of bulk TiO2 anatase and rutile single crystals using infrared absorption spectroscopy. Physical Review Letters, 106(13), 138302. https://doi.org/10.1103/PhysRevLett.106.138302
  • Zhang, C., Lu, C., Jing, Z., Wu, C., Piquemal, J.-P., Ponder, J. W., & Ren, P. (2018). AMOEBA polarizable atomic multipole force field for nucleic acids. Journal of Chemical Theory and Computation, 14(4), 2084–2108. https://doi.org/10.1021/acs.jctc.7b01169

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.