440
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Long-range communication between transmembrane- and nucleotide-binding domains does not depend on drug binding to mutant P-glycoprotein

, , , , ORCID Icon &
Pages 14428-14437 | Received 19 Nov 2022, Accepted 12 Feb 2023, Published online: 01 Mar 2023

References

  • Kapoor, K., Pant, S., & Tajkhorshid, E. (2021). Active participation of membrane lipids in inhibition of multidrug transporter P-glycoprotein. Chemical Science, 12(18), 6293–6306. https://doi.org/10.1039/D0SC06288J
  • Verhalen, B., Dastvan, R., Thangapandian, S., Peskova, Y., Koteiche, H. A., Nakamoto, R. K., Tajkhorshid, E., & Mchaourab, H. S. (2017). Energy transduction and alternating access of the mammalian ABC transporter P-glycoprotein. Nature, 543(7647), 738–741. https://doi.org/10.1038/nature21414
  • Aller, S. G., Yu, J., Ward, A., Weng, Y., Chittaboina, S., Zhuo, R., Harrell, P. M., Trinh, Y. T., Zhang, Q., Urbatsch, I. L., & Chang, G. (2009). Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science (New York, N.Y.), 323(5922), 1718–1722. https://doi.org/10.1126/science.1168750
  • Clouser, A. F., & Atkins, W. M. (2022). Long range communication between the drug-binding sites and nucleotide binding domains of the efflux transporter ABCB1. Biochemistry, 61(8), 730–740. https://doi.org/10.1021/acs.biochem.2c00056
  • Bonito, C. A., Ferreira, R. J., Ferreira, M.-J U., Gillet, J.-P., Cordeiro, M. N. D. S., & Dos Santos, D. J. V. A. (2020). Theoretical insights on helix repacking as the origin of P-glycoprotein promiscuity. Scientific Reports, 10(1), 9823. https://doi.org/10/s41598-020-66587-5
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Altenberg, G. A., Vanoye, C. G., Horton, J. K., & Reuss, L. (1994). Unidirectional fluxes of rhodamine 123 in multidrug-resistant cells: Evidence against direct drug extrusion from the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 91(11), 4654–4657. https://doi.org/10.1073/pnas.91.11.4654
  • Blau, C., & Grubmuller, H. (2013). g_contacts: Fast contact search in bio-molecular ensemble data. Computer Physics Communications, 184(12), 2856–2859. https://doi.org/10.1016/j.cpc.2013.07.018
  • Bonvin, A. M., Mark, A. E., & van Gunsteren, W. F. (2000). The GROMOS96 benchmarks for molecular simulation. Computer Physics Communications, 128(3), 550–557. https://doi.org/10.1016/S0010-4655(99)00540-8
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. Journal of Chemical Physics, 126(1), 014101–014107. https://doi.org/10.1063/1.2408420
  • Chandrasekhar, I., Bakowies, D., Glättli, A., Hünenberger, P., Pereira, C., & van Gunsteren, W. F. (2005). Molecular dynamics simulation of lipid bilayers with GROMOS96: Application of surface tension. Molecular Simulation , 31(8), 543–548. https://doi.org/10.1080/08927020500134243
  • Chen, G., Durán, G. E., Steger, K. A., Lacayo, N. J., Jaffrézou, J. P., Dumontet, C., & Sikic, B. I. (1997). Multidrug-resistant human sarcoma cells with a mutant P-glycoprotein, altered phenotype, and resistance to cyclosporins. The Journal of Biological Chemistry, 272(9), 5974–5982. https://doi.org/10.1074/jbc.272.9.5974
  • Chen, K., Lacayo, N. J., Durán, G. E., Cohen, D., & Sikic, B. I. (2000). Loss of cyclosporin and azidopine binding are associated with altered ATPase activity by a mutant P-glycoprotein with deleted phe(335). Molecular Pharmacology, 57(4), 769–777. https://doi.org/10.1124/mol.57.4.769
  • Choi, K. H., Chen, C. J., Kriegler, M., & Roninson, I. B. (1988). An altered pattern of cross-resistance in multidrug-resistant human cells results from spontaneous mutations in the mdr1 (P-glycoprotein) gene. Cell, 53(4), 519–529. https://doi.org/10.1016/0092-8674(88)90568-5
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. Journal of Chemical Physics. , 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Daura, X., Mark, A. E., & Van Gunsteren, W. F. (1998). Parametrization of aliphatic CHn united atoms of GROMOS96 force field. Journal of Computational Chemistry, 19(5), 535–547. https://doi.org/10.1002/(SICI)1096-987X(19980415)19:5 < 535::AID-JCC6 > 3.0.CO;2-N
  • Dey, S., Ramachandra, M., Pastan, I., Gottesman, M. M., & Ambudkar, S. V. (1997). Evidence for two nonidentical drug-interaction sites in the human P-glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 94(20), 10594–10599. https://doi.org/10.1073/pnas.94.20.10594
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Ferreira, R. J., Bonito, C. A., Ferreira, M. J. U., & dos Santos, D. J. V. A. (2017). About P-glycoprotein: a new drugable domain is emerging from structural data. WIREs Computational Molecular Science, 7(5), e1316. https://doi.org/10.1002/wcms.1316
  • Ferreira, R. J., Ferreira, M.-J. U., & dos Santos, D. J. V. A. (2015). Do adsorbed drugs onto P-glycoprotein influence its efflux capability? Physical Chemistry Chemical Physics : PCCP, 17(34), 22023–22034. https://doi.org/10.1039/C5CP03216D
  • Ferreira, R. J., Ferreira, M.-J. U., dos., & Santos, D. J. V. A. (2013). Molecular docking characterizes substrate-binding sites and efflux modulation mechanisms within P-glycoprotein. Journal of Chemical Information and Modeling, 53(7), 1747–1760. https://doi.org/10.1021/ci400195v
  • Harker, W. G., MacKintosh, F. R., & Sikic, B. I. (1983). Development and characterization of a human sarcoma cell line, MES-SA, sensitive to multiple drugs. Cancer Research, 43(10), 4943–4950.
  • Harker, W. G., & Sikic, B. I. (1985). Multidrug (pleiotropic) resistance in doxorubicin-selected variants of the human sarcoma cell line MES-SA. Cancer Research, 45(9), 4091–4096.
  • Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4(1), 116–122. https://doi.org/10.1021/ct700200b
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12 < 1463::AID-JCC4 > 3.0.CO;2-H
  • Hoover, W. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review. A, General Physics, 31(3), 1695–1697. https://doi.org/10.1103/PhysRevA.31.1695
  • Kapoor, K., Bhatnagar, J., Chufan, E. E., & Ambudkar, S. V. (2013). Mutations in intracellular loops 1 and 3 lead to misfolding of human P-glycoprotein (ABCB1) that can be rescued by cyclosporine A, which reduces its association with chaperone Hsp70. The Journal of Biological Chemistry, 288(45), 32622–32636. https://doi.org/10.1074/jbc.M113.498980
  • Kim, Y., & Chen, J. (2018). Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science (New York, N.Y.), 359(6378), 915–919. https://doi.org/10.1126/science.aar7389
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa —A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kwan, T., & Gros, P. (1998). Mutational analysis of the P-glycoprotein first intracellular loop and flanking transmembrane domains. Biochemistry, 37(10), 3337–3350. https://doi.org/10.1021/bi972680x
  • Lemkul, J. A., Allen, W. J., & Bevan, D. R. (2010). Practical considerations for building GROMOS-compatible small-molecule topologies. Journal of Chemical Information and Modeling, 50(12), 2221–2235. https://doi.org/10.1021/ci100335w
  • Loo, T. W., Bartlett, M. C., & Clarke, D. M. (2013). Human P-glycoprotein contains a greasy ball-and-socket joint at the second transmission interface. The Journal of Biological Chemistry, 288(28), 20326–20333. https://doi.org/10.1074/jbc.M113.484550
  • Loo, T. W., Bartlett, M. C., & Clarke, D. M. (2005). ATP hydrolysis promotes interactions between the extracellular ends of transmembrane segments 1 and 11 of human multidrug resistance P-glycoprotein. Biochemistry, 44(30), 10250–10258. https://doi.org/10.1021/bi050705j
  • Loo, T. W., Bartlett, M. C., & Clarke, D. M. (2003a). Simultaneous binding of two different drugs in the binding pocket of the human multidrug resistance P-glycoprotein. The Journal of Biological Chemistry, 278(41), 39706–39710. https://doi.org/10.1074/jbc.M308559200
  • Loo, T. W., Bartlett, M. C., & Clarke, D. M. (2003b). Substrate-induced conformational changes in the transmembrane segments of human P-glycoprotein. Direct evidence for the substrate-induced fit mechanism for drug binding. The Journal of Biological Chemistry, 278(16), 13603–13606. https://doi.org/10.1074/jbc.C300073200
  • Loo, T. W., & Clarke, D. M. (1993). Functional consequences of phenylalanine mutations in the predicted transmembrane domain of P-glycoprotein. The Journal of Biological Chemistry, 268(27), 19965–19972.
  • Loo, T. W., & Clarke, D. M. (1994). Functional consequences of glycine mutations in the predicted cytoplasmic loops of P-glycoprotein. The Journal of Biological Chemistry, 269(10), 7243–7248.
  • Loo, T. W., & Clarke, D. M. (1995). Rapid purification of human P-glycoprotein mutants expressed transiently in HEK 293 cells by nickel-chelate chromatography and characterization of their drug-stimulated ATPase activities. The Journal of Biological Chemistry, 270(37), 21449–21452. https://doi.org/10.1074/jbc.270.37.21449
  • Loo, T. W., & Clarke, D. M. (2005). Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. The Journal of Membrane Biology, 206(3), 173–185. https://doi.org/10.1007/s00232-005-0792-1
  • Loo, T. W., & Clarke, D. M. (2013). A salt bridge in intracellular loop 2 is essential for folding of human P-glycoprotein. Biochemistry, 52(19), 3194–3196. https://doi.org/10.1021/bi400425k
  • Loo, T. W., & Clarke, D. M. (2015). The transmission interfaces contribute asymmetrically to the assembly and activity of human P-glycoprotein. The Journal of Biological Chemistry, 290(27), 16954–16963. https://doi.org/10.1074/jbc.M115.652602
  • Loo, T. W., & Clarke, D. M. (2016a). Drugs modulate interactions between the first nucleotide-binding domain and the fourth cytoplasmic loop of human P-glycoprotein. Biochemistry, 55(20), 2817–2820. https://doi.org/10.1021/acs.biochem.6b00233
  • Loo, T. W., & Clarke, D. M. (2016b). P-glycoprotein ATPase activity requires lipids to activate a switch at the first transmission interface. Biochemical and Biophysical Research Communications, 472(2), 379–383. https://doi.org/10.1016/j.bbrc.2016.02.124
  • Mittra, R., Pavy, M., Subramanian, N., George, A. M., O'Mara, M. L., Kerr, I. D., & Callaghan, R. (2017). Location of contact residues in pharmacologically distinct drug binding sites on P-glycoprotein. Biochemical Pharmacology, 123, 19–28. https://doi.org/10.1016/j.bcp.2016.10.002
  • Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. https://doi.org/10.1002/jcc.540130805
  • Nosé, S., & Klein, M. L. (1983). Constant pressure molecular dynamics for molecular systems. Molecular Physics, 50(5), 1055–1076. https://doi.org/10.1080/00268978300102851
  • Omote, H., Figler, R. A., Polar, M. K., & Al-Shawi, M. K. (2004). Improved energy coupling of human P-glycoprotein by the glycine 185 to valine mutation. Biochemistry, 43(13), 3917–3928. https://doi.org/10.1021/bi035365l
  • Pajeva, I. K., Hanl, M., & Wiese, M. (2013). Protein contacts and ligand binding in the inward-facing model of human P-glycoprotein. ChemMedChem, 8(5), 748–762. https://doi.org/10.1002/cmdc.201200491
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Poger, D., & Mark, A. E. (2010). On the validation of molecular dynamics simulations of saturated and cis -monounsaturated phosphatidylcholine lipid bilayers: A comparison with experiment. Journal of Chemical Theory and Computation, 6(1), 325–336. https://doi.org/10.1021/ct900487a
  • Poger, D., Van, Gunsteren, W. F., & Mark, A. E. (2010). A new force field for simulating phosphatidylcholine bilayers. Journal of Computational Chemistry, 31(6), 1117–1125. https://doi.org/10.1002/jcc.21396
  • Prajapati, R., & Sangamwar, A. T. (2014). Translocation mechanism of P-glycoprotein and conformational changes occurring at drug-binding site: Insights from multi-targeted molecular dynamics. Biochimica et Biophysica Acta, 1838(11), 2882–2898. https://doi.org/10.1016/j.bbamem.2014.07.018
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Ramachandra, M., Ambudkar, S. V., Gottesman, M. M., Pastan, I., & Hrycyna, C. A. (1996). Functional characterization of a glycine 185-to-valine substitution in human P-glycoprotein by using a vaccinia-based transient expression system. Molecular Biology of the Cell, 7(10), 1485–1498. https://doi.org/10.1091/mbc.7.10.1485
  • Rao, U. S. (1995). Mutation of glycine 185 to valine alters the ATPase function of the human P-glycoprotein expressed in Sf9 cells. The Journal of Biological Chemistry, 270(12), 6686–6690.
  • Safa, A. R., Stern, R. K., Choi, K., Agresti, M., Tamai, I., Mehta, N. D., & Roninson, I. B. (1990). Molecular basis of preferential resistance to colchicine in multidrug-resistant human cells conferred by Gly-185––Val-185 substitution in. Proceedings of the National Academy of Sciences of the United States of America, 87(18), 7225–7229. https://doi.org/10.1073/pnas.87.18.7225
  • Schüttelkopf, A. W., & van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Scott, W. R. P., Hünenberger, P. H., Tironi, I. G., Mark, A. E., Billeter, S. R., Fennen, J., Torda, A. E., Huber, T., Krüger, P., & van Gunsteren, W. F. (1999). The GROMOS biomolecular simulation program package. The Journal of Physical Chemistry A, 103(19), 3596–3607. https://doi.org/10.1021/jp984217f
  • Shapiro, A. B., & Ling, V. (1997). Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. European Journal of Biochemistry, 250(1), 130–137. https://doi.org/10.1111/j.1432-1033.1997.00130.x
  • Tamai, I., & Safa, A. R. (1991). Azidopine noncompetitively interacts with vinblastine and cyclosporin A binding to P-glycoprotein in multidrug resistant cells. Journal of Biological Chemistry, 266(25), 16796–16800. https://doi.org/10.1016/S0021-9258(18)55371-0
  • van der Spoel, D., van Maaren, P. J., Larsson, P., & Tîmneanu, N. (2006). Thermodynamics of hydrogen bonding in hydrophilic and hydrophobic media. The Journal of Physical Chemistry. B, 110(9), 4393–4398. https://doi.org/10.1021/jp0572535
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Ward, A. B., Szewczyk, P., Grimard, V., Lee, C.-W., Martinez, L., Doshi, R., Caya, A., Villaluz, M., Pardon, E., Cregger, C., Swartz, D. J., Falson, P. G., Urbatsch, I. L., Govaerts, C., Steyaert, J., & Chang, G. (2013). Structures of P-glycoprotein reveal its conformational flexibility and an epitope on the nucleotide-binding domain. Proceedings of the National Academy of Sciences of the United States of America, 110(33), 13386–13391. https://doi.org/10.1073/pnas.1309275110
  • Wise, J. G. (2012). Catalytic transitions in the human MDR1 P-glycoprotein drug binding sites. Biochemistry, 51(25), 5125–5141. https://doi.org/10.1021/bi300299z
  • Juliano, R. L., & Ling, V. (1976). A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochimica Et Biophysica Acta, 455(1), 152–162. https://doi.org/10.1016/0005-2736(76)90160-7
  • Clouser, A. F., Alam, Y. H., & Atkins, W. M. (2021). Cholesterol asymmetrically modulates the conformational ensemble of the nucleotide-binding domains of P-glycoprotein in lipid nanodiscs. Biochemistry, 60(1), 85–94. https://doi.org/10.1021/acs.biochem.0c00824
  • Becker, J.-P., Depret, G., Van Bambeke, F., Tulkens, P. M., & Prévost, M. (2009). Molecular models of human P-glycoprotein in two different catalytic states. BMC Structural Biology, 9(1), 18. https://doi.org/10.1186/1472-6807-9-3
  • Ferreira, R. J., Bonito, C. A., Cordeiro, M. N. D. S., Ferreira, M.-J U., & Dos Santos, D. J. V. A. (2017). Structure-function relationships in ABCG2: Insights from molecular dynamics simulations and molecular docking studies. Scientific Reports, 7(1), 15534. https://doi.org/10.1038/s41598-017-15452-z