196
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Identifying novel and potent inhibitors of EGFR protein for the drug development against the breast cancer

ORCID Icon, , , , , , , ORCID Icon, ORCID Icon & show all
Pages 14460-14472 | Received 22 Nov 2022, Accepted 12 Feb 2023, Published online: 24 Feb 2023

References

  • Spadeto, J. P. M., Cormanich, R. A., Franca, T. C. C., LaPlante, S. R., & Goncalves, A. S. (2022). Docking and molecular dynamics studies of potential new leads against DBL3x derived from chondroitin sulfate A (CSA): A new approach for the treatment of malaria. Journal of Biomolecular Structure & Dynamics, 40(18), 8384–8393.
  • Sainsbury, J. R., Farndon, J. R., Needham, G. K., Malcolm, A. J., & Harris, A. L. (1987). Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet, 1, 1398–1402.
  • Alazmi, M., & Motwalli, O. (2021). In silico virtual screening, characterization, docking and molecular dynamics studies of crucial SARS-CoV-2 proteins. Journal of Biomolecular Structure and Dynamics, 39(17), 6761–6771. https://doi.org/10.1080/07391102.2020.1803965
  • Bahaman, A. H., Wahab, R. A., Abdul Hamid, A. A., Abd Halim, K. B., & Kaya, Y. (2021). Molecular docking and molecular dynamics simulations studies on β-glucosidase and xylanase Trichoderma asperellum to predict degradation order of cellulosic components in oil palm leaves for nanocellulose preparation. Journal of Biomolecular Structure and Dynamics, 39(7), 2628–2641. https://doi.org/10.1080/07391102.2020.1751713
  • Burness, M. L., Grushko, T. A., & Olopade, O. I. (2010). Epidermal growth factor receptor in triplenegative and basal-like breast cancer: Promising clinical target or only a marker? Cancer Journal (Sudbury, Mass.), 16(1), 23–32. https://doi.org/10.1097/PPO.0b013e3181d24fc1
  • Cheang, M. C. U., Voduc, D., Bajdik, C., Leung, S., McKinney, S., Chia, S. K., Perou, C. M., & Nielsen, T. O. (2008). Basal‐like breast cancer defined by five biomarkers has superior prognostic value than triple‐negative phenotype. Clinical Cancer Research, 14(5), 1368–1376. https://doi.org/10.1158/1078-0432.CCR-07-1658
  • Chowdhury, S. R., Kennedy, S., Zhu, K., Mishra, R., Chuong, P., Nguyen, A. U., Kathman, S. G., & Statsyuk, A. V. (2019). Discovery of covalent enzyme inhibitors using virtual docking of covalent fragments. Bioorganic & Medicinal Chemistry Letters, 29(1), 36–39.
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018
  • Czub, N., Pacławski, A., Szlęk, J., & Mendyk, A. (2022). Do AutoML-based QSAR models fulfill OECD principles for regulatory assessment? A 5-HT1A receptor case. Pharmaceutics, 14(7), 1415. https://doi.org/10.3390/pharmaceutics14071415
  • Duch, W., Swaminathan, K., & Meller, J. (2007). Artificial intelligence approaches for rational drug design and discovery. Current Pharmaceutical Design, 13(14), 1497–1508. https://doi.org/10.2174/138161207780765954
  • Gajiwala, K. S., Feng, J., Ferre, R., Ryan, K., Brodsky, O., Weinrich, S., Kath, J. C., & Stewart, A. (2013). Insights into the aberrant activity of mutant EGFR kinase domain and drug recognition. Structure (London, England : 1993), 21(2), 209–219. https://doi.org/10.1016/j.str.2012.11.014
  • Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D., Mutowo, P., Atkinson, F., Bellis, L. J., Cibrián-Uhalte, E., Davies, M., Dedman, N., Karlsson, A., Magariños, M. P., Overington, J. P., Papadatos, G., Smit, I., & Leach, A. R. (2017). The ChEMBL database in 2017. Nucleic Acids Research, 45(D1), D945–D954. https://doi.org/10.1093/nar/gkw1074
  • Gómez-Ganau, S., Castillo, J., Cervantes, A., de Julián-Ortiz, J. V., & Gozalbes, R. (2020). Computational evaluation and in vitro validation of new epidermal growth factor receptor inhibitors. Current Topics in Medicinal Chemistry, 20(18), 1628–1639. https://doi.org/10.2174/1568026620666200603122726
  • Gupta, R., Srivastava, D., Sahu, M., Tiwari, S., Ambasta, R. K., & Kumar, P. (2021). Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Molecular Diversity, 25(3), 1315–1360. https://doi.org/10.1007/s11030-021-10217-3
  • Gupta, P., & Mohanty, D. (2021). SMMPPI: A machine learning-based approach for prediction of modulators of protein–protein interactions and its application for identification of novel inhibitors for RBD: hACE2 interactions in SARS-CoV-2. Briefings in Bioinformatics, 22(5), bbab111. https://doi.org/10.1093/bib/bbab111
  • Ho, T. K. (1995). Random decision forests. In Proceedings of Proceedings of 3rd International Conference on Document Analysis and Recognition (pp. 278–282).
  • Kalyane, D. (2020). Artificial intelligence in the pharmaceutical sector: Current scene and future prospect. In: Tekade Rakesh K. (Ed.), The future of pharmaceutical product development and research (pp. 73–107). Elsevier.
  • Kashyap, K., & Siddiqi, M. I. (2021). Recent trends in artificial intelligence-driven identification and development of anti-neurodegenerative therapeutic agents. Molecular Diversity, 25(3), 1517–1539. Aughttps://doi.org/10.1007/s11030-021-10274-8
  • Klijn, J. G., Berns, P. M., Schmitz, P. I., & Foekens, J. A. (1992). The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: A review on 5232 patients. Endocrine Reviews, 13(1), 3–17.
  • Lamberti, M. J., Wilkinson, M., Donzanti, B. A., Wohlhieter, G. E., Parikh, S., Wilkins, R. G., & Getz, K. (2019). A study on the application and use of artificial intelligence to support drug development. Clinical Therapeutics, 41(8), 1414–1426. https://doi.org/10.1016/j.clinthera.2019.05.018
  • Lurje, G., & Lenz, H. J. (2009). EGFR signaling and drug discovery. Oncology, 77(6), 400–410.
  • Majhi, M., Ali, M. A., Limaye, A., Sinha, K., Bairagi, P., Chouksey, M., Shukla, R., Kanwar, N., Hussain, T., Nayarisseri, A., & Singh, S. K. (2018). An in silico investigation of potential EGFR inhibitors for the clinical treatment of colorectal cancer. Current Topics in Medicinal Chemistry, 18(27), 2355–2366. https://doi.org/10.2174/1568026619666181129144107
  • Masuda, H., Zhang, D., Bartholomeusz, C., Doihara, H., Hortobagyi, G. N., & Ueno, N. T. (2012). Role of epidermal growth factor receptor in breast cancer. Breast Cancer Research and Treatment, 136(2), 331–345. https://doi.org/10.1007/s10549-012-2289-9
  • Mendelsohn, J., & Baselga, J. (2003). Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. Journal of Clinical Oncology, 21(14), 2787–2799. https://doi.org/10.1200/JCO.2003.01.504
  • Mucherino, A., Papajorgji, P. J., & Pardalos, P. M. (2009). K-nearest neighbor classification. In Data mining in agriculture (pp. 83–106). Springer.
  • Mysinger, M. M., Carchia, M., Irwin, J. J., & Shoichet, B. K. (2012). Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. Journal of Medicinal Chemistry, 55(14), 6582–6594. https://doi.org/10.1021/jm300687e
  • Nabholtz, J. M., Abrial, C., Mouret-Reynier, M. A., Dauplat, M. M., Weber, B., Gligorov, J., Forest, A. M., Tredan, O., Vanlemmens, L., Petit, T., Guiu, S., Van Praagh, I., Jouannaud, C., Dubray-Longeras, P., Tubiana-Mathieu, N., Benmammar, K. E., Kullab, S., Bahadoor, M. R., Radosevic-Robin, N., … Penault-Llorca, F. (2014). Multicentric neoadjuvant phase II study of panitumumab combined with an anthracycline/taxane-based chemotherapy in operable triple-negative breast cancer: identification of biologically defined signatures predicting treatment impact. Annals of Oncology, 25(8), 1570–1577.
  • Nakai, K., Hung, M. C., & Yamaguchi, H. (2016). A perspective on anti-EGFR therapies targeting triple-negative breast cancer. American Journal of Cancer Research, 6(8), 1609–1623.
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Pal, S. K., & Mitra, S. (1992). Multilayer perceptron, fuzzy sets, classification.
  • Páll, S., Abraham, M. J., Kutzner, C., Hess, B., & Lindahl, E. (2015). Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In S. Markidis, & E. Laure (Eds.), Solving software challenges for exascale (pp. 3–27). Springer International Publishing.
  • Patel, L., Shukla, T., Huang, X., Ussery, D. W., & Wang, S. (2020). Machine learning methods in drug discovery. Molecules, 25(22), 5277. https://doi.org/10.3390/molecules25225277
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
  • Rakha, E. A., El-Sayed, M. E., Green, A. R., Lee, A. H., Robertson, J. F., & Ellis, I. O. (2007). Prognostic markers in triple-negative breast cancer. Cancer, 109(1), 25–32. https://doi.org/10.1002/cncr.22381
  • Rampaul, R. S., Pinder, S. E., Nicholson, R. I., Gullick, W. J., Robertson, J. F., & Ellis, I. O. (2005). Clinical value of epidermal growth factor receptor expression in primary breast cancer. Advances in Anatomic Pathology, 12, 271–273.
  • Reis-Filho, J. S., Pinheiro, C., Lambros, M. B. K., Milanezi, F., Carvalho, S., Savage, K., Simpson, P. T., Jones, C., Swift, S., Mackay, A., Reis, R. M., Hornick, J. L., Pereira, E. M., Baltazar, F., Fletcher, C. D. M., Ashworth, A., Lakhani, S. R., & Schmitt, F. C. (2006). EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. The Journal of Pathology, 209(4), 445–453.
  • Salomon, D. S., Brandt, R., Ciardiello, F., & Normanno, N. (1995). Epidermal growth factor-related peptides and their receptors in human malignancies. Critical Reviews in Oncology/Hematology, 19(3), 183–232. https://doi.org/10.1016/1040-8428(94)00144-I
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Sbongile, M., & Soliman, M. E. (2015). In silico identification of irreversible cathepsin B inhibitors as anti- cancer agents: Virtual screening, covalent docking analysis and molecular dynamics simulations. Combinatorial Chemistry & High Throughput Screening, 18(4), 399–410.
  • Shah, A., & Seth, A. K. (2021). In silico identification of novel flavonoids targeting epidermal growth factor receptor. Current Drug Discovery Technologies, 18(1), 75–82. https://doi.org/10.2174/1570163816666191023102112
  • Sharma, T., Baig, M. H., Khan, M. I., Alotaibi, S. S., Alorabi, M., & Dong, J. J. (2022). Computational screening of camostat and related compounds against human TMPRSS2: A potential treatment of COVID-19. Saudi Pharmaceutical Journal, 30(3), 217–224. https://doi.org/10.1016/j.jsps.2022.01.005
  • Sharma, T., Saralamma, V. V. G., Lee, D. C., Imran, M. A., Choi, J., Baig, M. H., & Dong, J. J. (2022). Combining structure-based pharmacophore modeling and machine learning for the identification of novel BTK inhibitors. International Journal of Biological Macromolecules, 222(Pt A), 239–250. 1https://doi.org/10.1016/j.ijbiomac.2022.09.151
  • Sharma, T., & Siddiqi, M. I. (2019). In silico identification and design of potent peptide inhibitors against PDZ-3 domain of Postsynaptic Density Protein (PSD-95). Journal of Biomolecular Structure & Dynamics, 37(5), 1241–1253. https://doi.org/10.1080/07391102.2018.1454851
  • Sharma, T., Harioudh, M. K., Kuldeep, J., Kumar, S., Banerjee, D., Ghosh, J. K., & Siddiqi, M. I. (2020). Identification of potential inhibitors of Cathepsin-B using shape & pharmacophore-based virtual screening, molecular docking and explicit water thermodynamics. Molecular Informatics, 39(4), e1900023.
  • Shi, Z., Chen, J., Guo, X., Cheng, L., Guo, X., & Yu, T. (2018). In silico identification of potent small molecule inhibitors targeting epidermal growth factor receptor 1. Journal of Cancer Research and Therapeutics, 14(1), 18–23. https://doi.org/10.4103/jcrt.JCRT_365_17
  • Sterling, T., & Irwin, J. J. (2015). ZINC 15–ligand discovery for everyone. Journal of Chemical Information and Modeling, 55(11), 2324–2337. https://doi.org/10.1021/acs.jcim.5b00559
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291.
  • Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M., & Zhao, S. (2019). Applications of machine learning in drug discovery and development. Nature Reviews. Drug Discovery, 18(6), 463–477. https://doi.org/10.1038/s41573-019-0024-5
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. Jr. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry., 31(4), 671–690.
  • Vora, J., Patel, S., Athar, M., Sinha, S., Chhabria, M. T., Jha, P. C., & Shrivastava, N. (2020). Pharmacophore modeling, molecular docking and molecular dynamics simulation for screening and identifying anti-dengue phytocompounds. Journal of Biomolecular Structure & Dynamics, 38(6), 1726–1740.
  • Wolber, G., & Langer, T. (2005). LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. Journal of Chemical Information and Modeling, 45(1), 160–169. https://doi.org/10.1021/ci049885e
  • Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z.-H., Steinbach, M., Hand, D. J., & Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1–37. https://doi.org/10.1007/s10115-007-0114-2
  • Yamamoto, Y., Ibusuki, M., Nakano, M., Kawasoe, T., Hiki, R., & Iwase, H. (2009). Clinical significance of basal‐like subtype in triple‐negative breast cancer. Breast Cancer, 16(4), 260–267. https://doi.org/10.1007/s12282-009-0150-8
  • Yap, C. W. (2011). PaDEL‐descriptor: An open source software to calculate molecular descriptors and fingerprints. Journal of Computational Chemistry, 32(7), 1466–1474. https://doi.org/10.1002/jcc.21707
  • Yu, H.-F., Huang, F.-L., & Lin, C.-J. (2011). Dual coordinate descent methods for logistic regression and maximum entropy models. Machine Learning, 85(1–2), 41–75. https://doi.org/10.1007/s10994-010-5221-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.