261
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Molecular dynamics simulations and bioinformatics’ analysis of deleterious missense single nucleotide polymorphisms in Glyoxalase-1 gene

, &
Pages 13707-13717 | Received 01 Dec 2022, Accepted 12 Feb 2023, Published online: 22 Feb 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Adzhubei, I., Jordan, D. M., & Sunyaev, S. R. (2013). Predicting functional effect of human missense mutations using PolyPhen-2. Current Protocols in Human Genetics, 76(1). https://doi.org/10.1002/0471142905.hg0720s76
  • Ajadi, M. B., Soremekun, O. S., Adewumi, A. T., Kumalo, H. M., & Soliman, M. E. S. (2021). Functional analysis of single nucleotide polymorphism in ZUFSP protein and implication in pathogenesis. The Protein Journal, 40(1), 28–40. https://doi.org/10.1007/s10930-021-09962-z
  • Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1), W344–50. https://doi.org/10.1093/nar/gkw408
  • Birkenmeier, G., Stegemann, C., Hoffmann, R., Günther, R., Huse, K., & Birkemeyer, C. (2010). Posttranslational modification of human glyoxalase 1 indicates redox-dependent regulation. PLoS One, 5(4), e10399. https://doi.org/10.1371/journal.pone.0010399
  • Braun, J. D., Pastene, D. O., Breedijk, A., Rodriguez, A., Hofmann, B. B., Sticht, C., von Ochsenstein, E., Allgayer, H., van den Born, J., Bakker, S., Hauske, S. J., Krämer, B. K., Yard, B. A., & Albrecht, T. (2019). Methylglyoxal down-regulates the expression of cell cycle associated genes and activates the p53 pathway in human umbilical vein endothelial cells. Scientific Reports, 9(1), 1–14. https://doi.org/10.1038/s41598-018-37937-1
  • Brookes, A. J. (1999). The essence of SNPs. Gene, 234(2), 177–186. https://doi.org/10.1016/s0378-1119(99)00219-x
  • Calabrese, R., Capriotti, E., Fariselli, P., Martelli, P. L., & Casadio, R. (2009). Functional annotations improve the predictive score of human disease‐related mutations in proteins. Human Mutation, 30(8), 1237–1244. https://doi.org/10.1002/humu.21047
  • Cameron, A. D., Olin, B., Ridderström, M., Mannervik, B., & Jones, T. A. (1997). Crystal structure of human glyoxalase I–evidence for gene duplication and 3D domain swapping. The EMBO Journal, 16(12), 3386–3395. https://doi.org/10.1093/emboj/16.12.3386
  • Cameron, A. D., Ridderström, M., Olin, B., Kavarana, M. J., Creighton, D. J., & Mannervik, B. (1999). Reaction mechanism of glyoxalase I explored by an X-ray crystallographic analysis of the human enzyme in complex with a transition state analogue. Biochemistry, 38(41), 13480–13490. https://doi.org/10.1021/bi990696c
  • Cano-Gamez, E., & Trynka, G. (2020). From GWAS to function: using functional genomics to identify the mechanisms underlying complex diseases. Frontiers in Genetics, 11, 1–21. https://doi.org/10.3389/fgene.2020.00424
  • Capriotti, E., Calabrese, R., & Casadio, R. (2006). Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics (Oxford, England), 22(22), 2729–2734. https://doi.org/10.1093/bioinformatics/btl423
  • Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 33(Web Server), W306–W310. https://doi.org/10.1093/nar/gki375
  • Cargill, M., Altshuler, D., Ireland, J., Sklar, P., Ardlie, K., Patil, N., Shaw, N., Lane, C. R., Lim, E. P., Kalyanaraman, N., Nemesh, J., Ziaugra, L., Friedland, L., Rolfe, A., Warrington, J., Lipshutz, R., Daley, G. Q., & Lander, E. S. (1999). Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genetics, 22(3), 231–238. https://doi.org/10.1038/10290
  • Chen, R., Davydov, E. V., Sirota, M., & Butte, A. J. (2010). Non-synonymous and synonymous coding SNPS show similar likelihood and effect size of human disease association. PLoS One, 5(10), e13574. https://doi.org/10.1371/journal.pone.0013574
  • Cheng, J., Randall, A., & Baldi, P. (2006). Prediction of protein stability changes for single‐site mutations using support vector machines. Proteins: Structure, Function, and Bioinformatics, 62(4), 1125–1132. https://doi.org/10.1002/prot.20810
  • Choi, Y., Sims, G. E., Murphy, S., Miller, J. R., & Chan, A. P. (2012). Predicting the functional effect of amino acid substitutions and indels. PLoS One, 7(10), e46688. https://doi.org/10.1371/journal.pone.0046688
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19.
  • Drummond, D. A., & Wilke, C. O. (2008). Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell, 134(2), 341–352. https://doi.org/10.1016/j.cell.2008.05.042
  • He, Y., Zhou, C., Huang, M., Tang, C., Liu, X., Yue, Y., Diao, Q., Zheng, Z., & Liu, D. (2020). Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 131, 110663. https://doi.org/10.1016/j.biopha.2020.110663
  • Hecht, M., Bromberg, Y., & Rost, B. (2015). Better prediction of functional effects for sequence variants. BMC Genomics, 16(S8). https://doi.org/10.1186/1471-2164-16-S8-S1
  • Islam, M. J., Khan, A. M., Parves, M. R., Hossain, M. N., & Halim, M. A. (2019). Prediction of deleterious non-synonymous SNPs of human STK11 gene by combining algorithms, molecular docking, and molecular dynamics simulation. Scientific Reports, 9(1), 16. https://doi.org/10.1038/s41598-019-52308-0
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM‐GUI: A web‐based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Lee, J. E., Choi, J. H., Lee, J. H., & Lee, M. G. (2005). Gene SNPs and mutations in clinical genetic testing: Haplotype-based testing and analysis. Mutation Research, 573(1-2), 195–204. https://doi.org/10.1016/j.mrfmmm.2004.08.018
  • Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation, 12(1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935
  • Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265–D268. https://doi.org/10.1093/nar/gkz991
  • Maessen, D. E. M., Stehouwer, C. D. A., & Schalkwijk, C. G. (2015). The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clinical Science, 128(12), 839–861. https://doi.org/10.1042/CS20140683
  • Ng, P. C., & Henikoff, S. (2001). Predicting deleterious amino acid substitutions. Genome Research, 11(5), 863–874. https://doi.org/10.1101/gr.176601
  • Nigro, C., Leone, A., Fiory, F., Prevenzano, I., Nicolò, A., Mirra, P., Beguinot, F., & Miele, C. (2019). Dicarbonyl stress at the crossroads of healthy and unhealthy aging. Cells, 8(7), 749. https://doi.org/10.3390/cells8070749
  • Ott, C., Jacobs, K., Haucke, E., Santos, A. N., Grune, T., & Simm, A. (2014). Role of advanced glycation end products in cellular signaling. Redox Biology, 2, 411–429. https://doi.org/10.1016/j.redox.2013.12.016
  • Pejaver, V., Urresti, J., Lugo-Martinez, J., Pagel, K. A., Lin, G. N., Nam, H.-J., Mort, M., Cooper, D. N., Sebat, J., Iakoucheva, L. M., Mooney, S. D., & Radivojac, P. (2020). Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nature Communications, 11(1), 13. https://doi.org/10.1038/s41467-020-19669-x
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Rabbani, N., & Thornalley, P. J. (2015). Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochemical and Biophysical Research Communications, 458(2), 221–226. https://doi.org/10.1016/j.bbrc.2015.01.140
  • Ridderström, M., Cameron, A. D., Jones, T. A., & Mannervik, B. (1998). Involvement of an active-site Zn2+ ligand in the catalytic mechanism of human glyoxalase I. The Journal of Biological Chemistry, 273(34), 21623–21628. https://doi.org/10.1074/jbc.273.34.21623
  • Schrodinger, L. L. C. (2020). The PyMOL Molecular Graphics System, Version 2.0.
  • Thomas, P. D., Campbell, M. J., Kejariwal, A., Mi, H., Karlak, B., Daverman, R., Diemer, K., Muruganujan, A., & Narechania, A. (2003). PANTHER: A library of protein families and subfamilies indexed by function. Genome Research, 13(9), 2129–2141. https://doi.org/10.1101/gr.772403
  • Thornalley, P. J,. (2003). Glyoxalase I – Structure, function and a critical role in the enzymatic defence against glycation. Biochemical Society Transactions, 31(6), 1343–1348. https://doi.org/10.1042/bst0311343
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455–461.
  • Venselaar, H., Te Beek, T. A. H., Kuipers, R. K. P., Hekkelman, M. L., & Vriend, G. (2010). Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics, 11, 548. https://doi.org/10.1186/1471-2105-11-548
  • World Health Organization. (2018). Global report on diabetes.
  • Xue, M., Rabbani, N., & Thornalley, P. J. (2011). Glyoxalase in ageing. Seminars in Cell & Developmental Biology, 22(3), 293–301. https://doi.org/10.1016/j.semcdb.2011.02.013
  • Zhang, J., & Yang, J.-R. (2015). Determinants of the rate of protein sequence evolution. Nature Reviews. Genetics, 16(7), 409–420. https://doi.org/10.1038/nrg3950

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.