153
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Identification of potential biological target for trypanocidal sesquiterpene lactones derivatives

, , , , &
Pages 14510-14523 | Received 07 Oct 2022, Accepted 15 Feb 2023, Published online: 01 Mar 2023

References

  • Adessi, T. G., Ana, Y., Stempin, C. C., García, M. C., Bisogno, F. R., Nicotra, V. E., & García, M. E. (2022). Psilostachyins as trypanocidal compounds: Bioguided fractionation of Ambrosia tenuifolia chemically modified extract. Phytochemistry, 194, 113014. https://doi.org/10.1016/j.phytochem.2021.113014
  • Arantes, F. F. P., Barbosa, L. C. A., Maltha, C. R. A., Demuner, A. J., Fidêncio, P. H., & Carneiro, J. W. M. (2011). A quantum chemical and chemometric study of sesquiterpene lactones with cytotoxicity against tumor cells. Journal of Chemometrics, 25(8), 401–407. https://doi.org/10.1002/cem.1385
  • Chemical Computing Group Inc. (2019). Molecular operating environment (MOE) (2019.0102). https://www.chemcomp.com/
  • Chibli, L. A., Schmidt, T. J., Nonato, M. C., Calil, F. A., & da Costa, F. B. (2018). Natural products as inhibitors of Leishmania major dihydroorotate dehydrogenase. European Journal of Medicinal Chemistry, 157, 852–866. https://doi.org/10.1016/j.ejmech.2018.08.033
  • Comini, M. A., & Flohé, L. (2013). Trypanothione‐based redox metabolism of trypanosomatids. In Trypanosomatid diseases: Molecular routes to drug discovery (pp. 167–199). Wiley-VCH. https://doi.org/10.1002/9783527670383.ch9
  • Cortés-Figueroa, A. A., Pérez-Torres, A., Salaiza, N., Cabrera, N., Escalona-Montaño, A., Rondán, A., Aguirre-García, M., Gómez-Puyou, A., Pérez-Montfort, R., & Becker, I. (2008). A monoclonal antibody that inhibits Trypanosoma cruzi growth in vitro and its reaction with intracellular triosephosphate isomerase. Parasitology Research, 102(4), 635–643. https://doi.org/10.1007/s00436-007-0803-5
  • da Silva, C. F., Batista, D. d. G. J., De Araújo, J. S., Batista, M. M., Lionel, J., de Souza, E. M., Hammer, E. R., da Silva, P. B., De Mieri, M., Adams, M., Zimmermann, S., Hamburger, M., Brun, R., Schühly, W., & Soeiro, M. d. N. C. (2013). Activities of psilostachyin A and cynaropicrin against Trypanosoma cruzi in vitro and in vivo. Antimicrobial Agents and Chemotherapy, 57(11), 5307–5314. https://doi.org/10.1128/AAC.00595-13
  • de Paula da Silva, C. H. T., Bernardes, L. S. C., da Silva, V. B., Zani, C. L., & Carvalho, I. (2012). Novel aryl β-aminocarbonyl derivatives as inhibitors of Trypanosoma cruzi trypanothione reductase: binding mode revised by docking and GRIND2-based 3D-QSAR procedures. Journal of Biomolecular Structure and Dynamics, 29(6), 1206–1220. https://doi.org/10.1080/07391102.2011.672633
  • DeCorte, B. L. (2016). Underexplored opportunities for natural products in drug discovery: miniperspective. Journal of Medicinal Chemistry, 59(20), 9295–9304. https://doi.org/10.1021/acs.jmedchem.6b00473
  • Duschak, V. G., & Couto, A. S. (2007). An insight on targets and patented drugs for chemotherapy of Chagas disease. Recent Patents on anti-Infective Drug Discovery, 2(1), 19–51. https://doi.org/10.2174/157489107779561625
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Elso, O. G., Puente, V., Barrera, P., Sosa-Escudero, M. A., Sülsen, V. P., & Lombardo, M. E. (2022). Mode of action of the sesquiterpene lactones eupatoriopicrin and estafietin on Trypanosoma cruzi. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 96, 153900. https://doi.org/10.1016/j.phymed.2021.153900
  • García, M. C., Martinelli, M., Ponce, N. E., Sanmarco, L. M., Aoki, M. P., Manzo, R. H., & Jimenez-Kairuz, A. F. (2018). Multi-kinetic release of benznidazole-loaded multiparticulate drug delivery systems based on polymethacrylate interpolyelectrolyte complexes. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 120, 107–122. https://doi.org/10.1016/j.ejps.2018.04.034
  • Hashimoto, M., Morales, J., Fukai, Y., Suzuki, S., Takamiya, S., Tsubouchi, A., Inoue, S., Inoue, M., Kita, K., Harada, S., Tanaka, A., Aoki, T., & Nara, T. (2012). Critical importance of the de novo pyrimidine biosynthesis pathway for Trypanosoma cruzi growth in the mammalian host cell cytoplasm. Biochemical and Biophysical Research Communications, 417(3), 1002–1006. https://doi.org/10.1016/j.bbrc.2011.12.073
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Kimani, N. M., Matasyoh, J. C., Kaiser, M., Brun, R., & Schmidt, T. J. (2018a). Antiprotozoal sesquiterpene lactones and other constituents from Tarchonanthus camphoratus and Schkuhria pinnata. Journal of Natural Products, 81(1), 124–130. https://doi.org/10.1021/acs.jnatprod.7b00747
  • Kimani, N. M., Matasyoh, J. C., Kaiser, M., Brun, R., & Schmidt, T. J. (2018b). Sesquiterpene lactones from Vernonia cinerascens Sch. Bip. and their in vitro antitrypanosomal activity. Molecules, 23(2), 248. https://doi.org/10.3390/molecules23020248
  • Lenz, M., Krauth-Siegel, R. L., & Schmidt, T. J. (2019). Natural sesquiterpene lactones of the 4, 15-iso-atriplicolide type are inhibitors of trypanothione reductase. Molecules, 24(20), 3737. https://doi.org/10.3390/molecules24203737
  • Liu, H., & Hou, T. (2016). CaFE: a tool for binding affinity prediction using end-point free energy methods. Bioinformatics (Oxford, England), 32(14), 2216–2218. https://doi.org/10.1093/bioinformatics/btw215
  • Liu, X., Ouyang, S., Yu, B., Liu, Y., Huang, K., Gong, J., Zheng, S., Li, Z., Li, H., & Jiang, H. (2010). PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Research, 38(Web Server issue), W609–W614. https://doi.org/10.1093/nar/gkq300
  • Mendonça, A. A. S., Coelho, C. M., Veloso, M. P., Caldas, I. S., Goncalves, R. V., Teixeira, A. L., de Miranda, A. S., & Novaes, R. D. (2018). Relevance of trypanothione reductase inhibitors on Trypanosoma cruzi infection: A systematic review, meta-analysis, and in silico integrated approach. Oxidative Medicine and Cellular Longevity, 2018, 8676578–8676578. https://doi.org/10.1155/2018/8676578
  • O Salas, C., Faúndez, M., Morello, A., Diego Maya, J. A., & Tapia, R. (2011). Natural and synthetic naphthoquinones active against Trypanosoma cruzi: an initial step towards new drugs for Chagas disease. Current Medicinal Chemistry, 18(1), 144–161. https://doi.org/10.2174/092986711793979779
  • Pérez-Molina, J. A., & Molina, I. (2018). Chagas disease. Lancet (London, England), 391(10115), 82–94. https://doi.org/10.1016/S0140-6736(17)31612-4
  • Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., Buch, R., Fiorin, G., Hénin, J., Jiang, W., McGreevy, R., Melo, M. C. R., Radak, B. K., Skeel, R. D., Singharoy, A., Wang, Y., Roux, B., Aksimentiev, A., Luthey-Schulten, Z., … Tajkhorshid, E. (2020). Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics, 153(4), 044130. https://doi.org/10.1063/5.0014475
  • Ribeiro, V., Dias, N., Paiva, T., Hagström-Bex, L., Nitz, N., Pratesi, R., & Hecht, M. (2020). Current trends in the pharmacological management of Chagas disease. International Journal for Parasitology. Drugs and Drug Resistance, 12, 7–17. https://doi.org/10.1016/j.ijpddr.2019.11.004
  • Schirmer, R. H., Müller, J. G., & Krauth‐Siegel, R. L. (1995). Disulfide‐reductase inhibitors as chemotherapeutic agents: the design of drugs for trypanosomiasis and malaria. Angewandte Chemie International Edition in English, 34(2), 141–154. https://doi.org/10.1002/anie.199501411
  • Schmidt, T. J. (2006). Structure-activity relationships of sesquiterpene lactones. Studies in Natural Products Chemistry, 33, 309–392. https://doi.org/10.1016/S1572-5995(06)80030-X
  • Steindl, T. M., Schuster, D., Wolber, G., Laggner, C., & Langer, T. (2006). High-throughput structure-based pharmacophore modelling as a basis for successful parallel virtual screening. Journal of Computer-Aided Molecular Design, 20(12), 703–715. https://doi.org/10.1007/s10822-006-9066-y
  • Sülsen, V. P., Cazorla, S. I., Frank, F. M., Laurella, L. C., Muschietti, L. v., Catalan, C. A., Martino, V. S., & Malchiodi, E. L. (2013). Natural terpenoids from Ambrosia species are active in vitro and in vivo against human pathogenic trypanosomatids. PLoS Neglected Tropical Diseases, 7(10), e2494. https://doi.org/10.1371/journal.pntd.0002494
  • Sülsen, V. P., Frank, F. M., Cazorla, S. I., Anesini, C. A., Malchiodi, E. L., Freixa, B., Vila, R., Muschietti, L. V., & Martino, V. S. (2008). Trypanocidal and leishmanicidal activities of sesquiterpene lactones from Ambrosia tenuifolia Sprengel (Asteraceae). Antimicrobial Agents and Chemotherapy, 52(7), 2415–2419. https://doi.org/10.1128/AAC.01630-07
  • Sülsen, V. P., Frank, F. M., Cazorla, S. I., Barrera, P., Freixa, B., Vila, R., Sosa, M. A., Malchiodi, E. L., Muschietti, L. v., & Martino, V. S. (2011). Psilostachyin C: a natural compound with trypanocidal activity. International Journal of Antimicrobial Agents, 37(6), 536–543. https://doi.org/10.1016/j.ijantimicag.2011.02.003
  • Sülsen, V. P., & Martino, V. S. (2018). Sesquiterpene lactones. Advances in their chemistry and biological aspects. Springer International Publishing AG. https://doi.org/10.1007/978-3-319-78274-4
  • Sülsen, V. P., Puente, V., Papademetrio, D., Batlle, A., Martino, V. S., Frank, F. M., & Lombardo, M. E. (2016). Mode of action of the sesquiterpene lactones psilostachyin and psilostachyin C on Trypanosoma cruzi. PLoS One, 11(3), e0150526. https://doi.org/10.1371/journal.pone.0150526
  • Vanommeslaeghe, K., & MacKerell, A. D. Jr. (2015). CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. Biochimica Et Biophysica Acta, 1850(5), 861–871. https://doi.org/10.1016/j.bbagen.2014.08.004
  • Vázquez, K., Paulino, M. O., Salas, C. J., Zarate-Ramos, J., Vera, B., & Rivera, G. (2017). Trypanothione reductase: a target for the development of anti-Trypanosoma cruzi drugs. Mini Reviews in Medicinal Chemistry, 17(11), 939–946. https://doi.org/10.2174/1389557517666170315145410
  • Vera, B., Vázquez, K., Mascayano, C., Tapia, R. A., Espinosa, V., Soto-Delgado, J., Salas, C. O., & Paulino, M. (2017). Structural analysis and molecular docking of trypanocidal aryloxy-quinones in trypanothione and glutathione reductases: a comparison with biochemical data. Journal of Biomolecular Structure and Dynamics, 35(8), 1785–1803. https://doi.org/10.1080/07391102.2016.1195283
  • Verlinde, C. L. M. J., Hannaert, V., Blonski, C., Willson, M., Périé, J. J., Fothergill-Gilmore, L. A., Opperdoes, F. R., Gelb, M. H., Hol, W. G. J., & Michels, P. A. M. (2001). Glycolysis as a target for the design of new anti-trypanosome drugs. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 4(1), 50–65. https://doi.org/10.1054/drup.2000.0177
  • Wang, X., Pan, C., Gong, J., Liu, X., & Li, H. (2016). Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs. Journal of Chemical Information and Modeling, 56(6), 1175–1183. https://doi.org/10.1021/acs.jcim.5b00690
  • Wang, X., Shen, Y., Wang, S., Li, S., Zhang, W., Liu, X., Lai, L., Pei, J., & Li, H. (2017). PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Research, 45(W1), W356–W360. https://doi.org/10.1093/nar/gkx374
  • WHO. (2022). World Health Organization, Chagas disease (American trypanosomiasis). Last Update: April, 2022. http://www.who.int/mediacentre/factsheets/fs340/en/ (Accessed 22 Feb 2023).
  • Wolber, G., & Langer, T. (2005). LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. Journal of Chemical Information and Modeling, 45(1), 160–169. https://doi.org/10.1021/ci049885e

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.