122
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A theoretical survey to find potential natural compound for inhibition of binding the RBD domain to ACE2 receptor based on plant antivirals

ORCID Icon & ORCID Icon
Pages 14540-14565 | Received 20 Oct 2022, Accepted 16 Feb 2023, Published online: 28 Mar 2023

References

  • Alexpandi, R., De Mesquita, J. F., Pandian, S. K., & Ravi, A. V. (2020). Quinolones-Based SARS- CoV-2 3CLpro and RdRp inhibitors and spike-RBD-ACE2 inhibitor for drug-repurposing against COVID-19: An in silico analysis. Frontiers in Microbiology, 11, 1–15. https://doi.org/10.3389/fmicb.2020.01796
  • Astani, A., Reichling, J., & Schnitzler, P. (2010). Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phytotherapy Research: PTR, 24(5), 673–679. https://doi.org/10.1002/ptr.2955
  • Basu, A., Anasua Sarkar, A., & Ujjwal Maulik, U. (2020). Molecular docking study of potential phytochemicals and their effects on the complex of SARS CoV2 spike protein and human ACE2. Scientific Reports, 10(1), 17699. https://doi.org/10.1038/s41598-020-74715-4
  • Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A. R. H. J., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Brijesh, K., Sama, Z., Shafiul, H., Nandita, D., Arif, H., Sreepoorna, P., Vineeta, S., & Bhartendu Nath, M. (2021). In silico studies reveal antiviral effects of traditional Indian spices on COVID-19. Bentham Science Publishers, 27(32), 3462–3475. https://doi.org/10.2174/1381612826666201223095548
  • Buonaguro, L., Tagliamonte, M., Tornesello, M. L., & Buonaguro, F. M. (2020). SARS-CoV-2 RNA polymerase is the target for antiviral therapy. Journal of Translational Medicine, 18(1), 185. https://doi.org/10.1186/s12967-020-02355-3
  • Chandel, V., Raj, S., Rathi, B., & Kumar, D. (2020). In silico identification of potent COVID-19, main protease inhibitors from FDA approved antiviral compounds and active phytochemicals through molecular docking: A drug repurposing approach. Preprints.org. https://doi.org/10.20944/preprints202003.0349.v1
  • Chidambaram, S., El-Sheikh, M. A., Alfarhan, A. H., Radhakrishnan, S., & Akbar, I. (2021). Synthesis of novel coumarin analogs: Investigation of molecular docking interaction of SARS-CoV-2 proteins with natural and synthetic coumarin analogs and their pharmacokinetics studies. Saudi Journal of Biological Sciences, 28(1), 1100–1108. https://doi.org/10.1016/j.sjbs.2020.11.038
  • Da Silva, J. K. R., Figueiredo, P. L. B., Byler, K. G., & Setzer, W. N. (2020). Essential oils as antiviral agents, potential of essential oils to treat SARS-CoV-2 infection: An in-silico investigation. International Journal of Molecular Sciences, 21(10), 3426. https://doi.org/10.3390/ijms21103426
  • Dai, J. P., et al. (2017). Emodin inhibition of influenza A virus replication and influenza viral pneumonia via the Nrf2, TLR4, p38/JNK, and NF-kappaB pathways. Molecules, 22(10), 1754. https://doi.org/10.3390/molecules22101754
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • De Oliveira, O. V., Rocha, G. B., Paluch, A. S., & Costa, L. T. (2021). Repurposing approved drugs as inhibitors of SARS-CoV-2 S-protein from molecular modeling and virtual screening. Journal of Biomolecular Structure and Dynamics, 39(11), 3924–3933. https://doi.org/10.1080/07391102.2020.1772885
  • Gaillard, T. (2018). Evaluation of AutoDock and AutoDock Vina on the CASF-2013 benchmark. Journal of Chemical Information and Modeling, 58, 8. https://doi.org/10.1021/acs.jcim.8b00312
  • Gohlke, H., & Case, D. A. (2004). Converging free energy estimates: MM/PB (GB) SA studies on the protein-protein complex Ras-Raf. Journal of Computational Chemistry, 25(2), 238–250. https://doi.org/10.1002/jcc.10379
  • Hanson, Q. M., Wilson, K. M., Shen, M., Itkin, Z., Eastman, R. T., Shinn, P., Matthew, D., & Hall, M. D. (2020). Targeting ACE2-RBD interaction as a platform for COVID-19 therapeutics: Development and drug-repurposing screen of a LISA proximity assay. ACS Pharmacology & Translational Science, 3(6), 1352–1360. https://doi.org/10.1021/acsptsci.0c00161
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: a linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)
  • Ho, T. Y., Wu, S. L., Chen, J. C., Li, C. C., & Hsiang, C. Y. (2007). Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Research, 74(2), 92–101. https://doi.org/10.1016/j.antiviral.2006.04.014
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Kalathiya, U., Padariya, M., Mayordomo, M., Lisowska, M., Nicholson, J., Singh, A., Baginski, M., Fahraeus, R., Carragher, N., Ball, K., Haas, J., Daniels, A., Hupp, T. R., & Alfaro, J. A. (2020). Highly conserved homotrimer cavity formed by the SARS-CoV-2 spike glycoprotein: A novel binding site. Journal of Clinical Medicine, 9(5), 1473. https://doi.org/10.3390/jcm9051473
  • Kordzadeh, A., Saadatabadi, A. R., & Hadi, A. (2020). Investigation on the penetration of saffron components through lipid bilayer bound to spike protein of SARS-CoV-2 using steered molecular dynamics simulation. Heliyon, 6(12), e05681. https://doi.org/10.1016/j.heliyon.2020.e05681
  • Kulkarni, S. A., Nagarajan, S. K., Ramesh, V., Palaniyandi, V., Selvam, S. P., & Madhavan, T. (2020). Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein. Journal of Molecular Structure, 1221, 128823. https://doi.org/10.1016/j.molstruc.2020.128823
  • Kumari, R., Kumar, R., & Lynn, A., Open Source Drug Discovery Consortium. (2014). g_mmpbsa, A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lima de Oliveira, M. D., & Teixeira de Oliveira, K. M. (2020). Comparative docking of SARS-CoV-2 receptors antagonists from repurposing drugs. ChemRxiv. Cambridge Open Engage. https://www.researchgate.net/publication/340389889
  • Lin, C.-W., Wu, C.-F., Hsiao, N.-W., Chang, C.-Y., Li, S.-W., Wan, L., Lin, Y.-J., & Lin, W.-Y. (2008). Aloe-emodin is an interferon-inducing agent with antiviral activity against the Japanese encephalitis virus and enterovirus 71. International Journal of Antimicrobial Agents, 32(4), 355–359. https://doi.org/10.1016/j.ijantimicag.2008.04.018
  • Lindahl, A., & Hess, V D S. (2021). GROMACS 5 Manual. https://doi.org/10.5281/zenodo.4576060
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
  • Mahnam, K., & Ghobadi, Z. (2022). Finding a prospective dual-target drug for the treatment of coronavirus disease by theoretical study. Journal of Biomolecular Structure & Dynamics, 40(23), 12621–12641. https://doi.org/10.1080/07391102.2021.1973910
  • Mansouri, A., & Mahnam, K. (2017). Designing new surfactant peptides for binding to carbon nanotubes via computational approaches. Journal of Molecular Graphics & Modelling, 74, 61–72. https://doi.org/10.1016/j.jmgm.2017.02.016
  • Niroumand, M. C., Farzaei, M. H., & Amin, G. (2015). Medicinal properties of Peganum harmala L. in traditional Iranian medicine and modern phytotherapy: a review. Journal of Traditional Chinese Medicine = Chung i Tsa Chih Ying Wen Pan, 35(1), 104–109. https://doi.org/10.1016/s0254-6272(15)30016-9
  • Panagiotopoulos, A., Tseliou, M., Karakasiliotis, I., Kotzampasi, D. M., Daskalakis, V., Kesesidis, N., Notas, G., Lionis, C., Kampa, M., Pirintsos, S., Sourvinos, G., & Castanas, E. (2021). p-cymene impairs SARS-CoV-2 and Influenza A (H1N1) viral replication: In silico predicted interaction with SARS-CoV-2 nucleocapsid protein and H1N1 nucleoprotein. Pharmacology Research & Perspectives, 9(4), e00798. https://doi.org/10.1002/prp2.798
  • Pande, M., Kundu, D., & Srivastava, R. (2021). Drugs repurposing against SARS-CoV2 and the new variant B.1.1.7 (alpha strain) targeting the spike protein: molecular docking and simulation studies. Heliyon, 7(8), e07803. https://doi.org/10.1016/j.heliyon.2021.e07803
  • Pandey, A. K., Kumar, P., Singh, P., Tripathi, N. N., & Bajpai, V. K. (2017). Essential oils: Sources of antimicrobials and food preservatives. Frontiers in Microbiology, 7, 2161. https://doi.org/10.3389/fmicb.2016.02161
  • Pandey, P., Rane, J. S., Chatterjee, A., Kumar, A., Khan, R., Prakash, A., & Ray, S. (2021). Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. Journal of Biomolecular Structure & Dynamics, 39(16), 6306–6316. https://doi.org/10.1080/07391102.2020.1796811
  • Patil, A. D., Freyer, A. J., Eggleston, D. S., Haltiwanger, R. C., Bean, M. F., Taylor, P. B., Caranfa, M. J., Breen, A. L., Bartus, H. R., & Johnson, R. K. (1993). The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum linn. Journal of Medicinal Chemistry, 36(26), 4131–4138. https://doi.org/10.1021/jm00078a001
  • Prajapat, M., Shekhar, N., Sarma, P., Avti, P., Singh, S., Kaur, H., Bhattacharyya, A., Kumar, S., Sharma, S., Prakash, A., & Medhi, B. (2020). Virtual screening and molecular dynamics study of approved drugs as inhibitors of spike protein S1 domain and ACE2 interaction in SARS-CoV. Journal of Molecular Graphics & Modelling, 101, 107716. https://doi.org/10.1016/j.jmgm.2020.107716
  • Prashantha, C. N., Gouthami, K., Lavanya, L., Bhavanam, S., Jakhar, A., Shakthiraju, R. G., Suraj, V., Sahana, K. V., Sujana, H. S., Guruprasad, N. M., & Ramachandra, R. (2021). Molecular screening of antimalarial, antiviral, anti-inflammatory, and HIV protease inhibitors against spike glycoprotein of coronavirus. Journal of Molecular Graphics and Modelling, 102, 10776. https://doi.org/10.1016/j.jmgm.2020.107769
  • Rendon-Marin, S., Martinez-Gutierrez, M., Whittaker, G. R., Jaimes, J. A., & Ruiz-Saenz, J. (2021). SARS CoV-2 spike protein in silico interaction with ACE2 receptors from wild and domestic. Frontiers in Genetics Sec. Computational Genomics, 12, 1–11. https://doi.org/10.3389/fgene.2021.571707
  • Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: current knowledge. Virology Journal, 16(1), 69. https://doi.org/10.1186/s12985-019-1182-0
  • Schüttelkopf, A. W., & van Aalten, D. M. F. (2004). PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallography, 8, 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Sehailia, M., & Chemat, S. (2021). Antimalarial-agent artemisinin and derivatives portray more potent binding to Lys353 and Lys31-binding hotspots of SARS-CoV-2 spike protein than hydroxychloroquine: potential repurposing of artenimol for COVID-19. Journal of Biomolecular Structure & Dynamics, 39(16), 6184–6194. https://doi.org/10.1080/07391102.2020.1796809
  • Shaghaghi, N. (2020). Molecular docking study of novel COVID-19 protease with low-risk terpenoides compounds of plants. ChemRxiv. Cambridge: Cambridge Open Engage, preprint
  • Soleymani, S., Zabihollahi, R., Shahbazi, S., & Bolhassani, A. (2018). Antiviral effects of saffron and its major ingredients. Current Drug Delivery, 15(5), 698–704. https://doi.org/10.2174/1567201814666171129210654
  • Soleymani, S., Zabihollahi, R., Shahbazi, S., & Bolhassani, A. (2017). Crocin, a carotenoid pigment of saffron inhibits the replication of HSV and HIV in vitro. Journal of Proteomics & Bioinformatics, 10, 12.
  • Suručić, R., Tubić, B., Stojiljković, M. P., Djuric, D. M., Travar, M., Grabež, M., Šavikin, K., & Škrbić, R. (2021). Computational study of pomegranate peel extract polyphenols as potential inhibitors of SARS-CoV-2 virus internalization. Molecular and Cellular Biochemistry, 476(2), 1179–1193. https://doi.org/10.1007/s11010-020-03981-7
  • Swamy, M. K., Akhtar, M. S., & Sinniah, U. R. (2016). Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evidence-Based Complementary and Alternative Medicine: eCAM, 2016, 3012462. https://doi.org/10.1155/2016/3012462
  • Sydiskis, R. J., Owen, D. G., Lohr, J. L., Rosler, K. H., & Blomster, R. N. (1991). Inactivation of enveloped viruses by anthraquinones extracted from plants. Antimicrobial Agents and Chemotherapy, 35(12), 2463–2466. https://doi.org/10.1128/aac.35.12.2463
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Unni, S., Aouti, S., & Padmanabhan, B. (2020). Identification of a potent inhibitor targeting the spike protein of pandemic human coronavirus, SARS-CoV-2 by computational methods. ChemRxiv https://doi.org/10.26434/chemrxiv.12197934.v1
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1996). LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, (2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Xia, X. (2021). Domains and functions of spike protein in SARS-Cov-2 in the context of vaccine design. Viruses, 13, 109. https://doi.org/10.3390/v13010109
  • Yagi, A., Hasegawa, M., & Ataka, S. (2020). Beneficial efficacy of aloe vera to viral infections: Case reports of kampo medicine with aloe vera juice. Journal of Gastroenterology and Hepatology Research, 9(4), 3242–3247.
  • Yang, Z., Wu, N., Zu, Y., & Fu, Y. (2011). Comparative anti-infectious bronchitis virus (IBV) activity of (-)-pinene: effect on nucleocapsid (N) protein. Molecules (Basel, Switzerland), 16(2), 1044–1054. https://doi.org/10.3390/molecules16021044
  • Yung-Fang, T., Chian-Shiu, C., Aliaksandr, A., Yarmishyn, Y. L., Yung-Hung, L., Yi-Tsung, L., Wei-Yi, L., De-Ming, Y., Shih-Jie, C., Yi-Ping, Y., Mong-Lien, W., & Shih-Hwa, C. (2020). A review of SARS-CoV-2 and the ongoing clinical trials. International Journal of Molecular Sciences, 21, 2657. https://doi.org/10.3390/ijms21072657

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.