191
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The coat protein of tobacco mosaic virus as an anti-tobacco mosaic virus: a molecular dynamics simulation

, &
Pages 13792-13797 | Received 23 Aug 2022, Accepted 15 Feb 2023, Published online: 01 Mar 2023

References

  • Abel, P. P., Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T., & Beachy, R. N. (1986). Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science, 80, 232. https://doi.org/10.1126/science.3457472
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19-25. https://doi.org/10.1016/j.softx.2015.06.001
  • Asurmendi, S., Berg, R. H., Koo, J. C., & Beachy, R. N. (2004). Coat protein regulates formation of replication complexes during tobacco mosaic virus infection. Proceedings of the National Academy of Sciences, 101(5), 1415–1420. https://doi.org/10.1073/pnas.0307778101
  • Asurmendi, S., Berg, R. H., Smith, T. J., Bendahmane, M., & Beachy, R. N. (2007). Aggregation of TMV CP plays a role in CP functions and in coat-protein-mediated resistance. Virology, 366(1), 98–106. https://doi.org/10.1016/j.virol.2007.03.014
  • Beachy, R. N. (1999). Coat-protein-mediated resistance to tobacco mosaic virus: Discovery mechanisms and exploitation, Philos. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 354(1383), 659–664. https://doi.org/10.1098/rstb.1999.0418
  • Bendahmane, M., & Beachy, R. N. (1999). Control of tobamovirus infections via pathogen-derived resistance. Advances in Virus Research, 53, 369–386. https://doi.org/10.1016/s0065-3527(08)60357-7
  • Bendahmane, M., Chen, I., Asurmendi, S., Bazzini, A. A., Szecsi, J., & Beachy, R. N. (2007). Coat protein-mediated resistance to TMV infection of Nicotiana tabacum involves multiple modes of interference by coat protein. Virology, 366(1), 107–116. https://doi.org/10.1016/j.virol.2007.03.052
  • Bendahmane, M., Fitchen, J. H., Zhang, G., & Beachy, R. N. (1997). Studies of coat protein-mediated resistance to tobacco mosaic tobamovirus: correlation between assembly of mutant coat proteins and resistance. Journal of Virology, 71(10), 7942–7950. https://doi.org/10.1128/jvi.71.10.7942-7950.1997
  • Bendahmane, M., Szécsi, J., Chen, I., Berg, R. H., & Beachy, R. N. (2002). Characterization of mutant tobacco mosaic virus coat protein that interferes with virus cell-to-cell movement. Proceedings of the National Academy of Sciences, 99(6), 3645–3650. https://doi.org/10.1073/pnas.062041499
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bhyravbhatla, B., Watowich, S. J., & Caspar, D. L. D. (1998). Refined atomic model of the four-layer aggregate of the tobacco mosaic virus coat protein at 2.4-Å resolution. Biophysical Journal, 74(1), 604–615. https://doi.org/10.1016/S0006-3495(98)77819-1
  • Bos, L. (1982). Crop losses caused by viruses. Crop Protection, 1(3), 263–282. https://doi.org/10.1016/0261-2194(82)90002-3
  • Butler, P. J. G. (1999). Self-assembly of tobacco mosaic virus: The role of an intermediate aggregate in generating both specificity and speed. Philosophical Transactions of the Royal Society B, 354, 537-550. https://doi.org/10.1098/rstb.1999.0405
  • Clark, W. G., Fitchen, J. H., & Beachy, R. N. (1995). Studies of coat protein-mediated resistance to TMV. Virology, 208(2), 485–491. https://doi.org/10.1006/viro.1995.1179
  • Culver, J. N. (2002). Tobacco mosaic virus assembly and disassembly: Determinants in pathogenicity and resistance. Annual Review of Phytopathology, 40(1), 287–308. https://doi.org/10.1146/annurev.phyto.40.120301.102400
  • Harrison, B. D., & Wilson, T. M. A. (1999). Milestones in the research on tobacco mosaic virus. Philosophical Transactions of the Royal Society B, 354, 521-529. https://doi.org/10.1098/rstb.1999.0403
  • Kumari, R., Kumar, R., Consortium, O., & Lynn, A., Open Source Drug Discovery Consortium. (2014). g _ mmpbsa - A GROMACS tool for MM-PBSA and its optimization for high-throughput binding energy calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Li, X., Song, B., Chen, X., Wang, Z., Zeng, M., Yu, D., Hu, D., Chen, Z., Jin, L., Yang, S., Yang, C., & Chen, B. (2013). Crystal structure of a four-layer aggregate of engineered TMV CP implies the importance of terminal residues for oligomer assembly. PLoS One, 8(11), e77717. https://doi.org/10.1371/journal.pone.0077717
  • Liu, J., Li, X. D., & Xu, S. (2020). Single amino acid substitutions in the coat protein and RNA-dependent RNA polymerase alleviated the virulence of Cucumber green mottle mosaic virus and conferred cross protection against severe infection. Virus Genes, 56(2), 228–235. https://doi.org/10.1007/s11262-019-01726-3
  • MacKerell, A. D., Banavali, N., & Foloppe, N. (2000). Development and current status of the CHARMM force field for nucleic acids. Biopolymers, 56(4), 257-265. https://doi.org/10.1002/1097-0282(2000)56:4 < 257::AID-BIP10029 > 3.0.CO;2-W
  • Massova, I., & Kollman, P. A. (2000). Combined molecular mechanical and continuum solvent approach (MM- PBSA/GBSA) to predict ligand binding. Perspectives in Drug Discovery and Design, 18,113-135. https://doi.org/10.1023/A:1008763014207
  • Nejidat, A., & Beachy, R. N. (1990). Transgenic tobacco plants expressing a coat protein gene of tobacco mosaic virus are resistant to some other tobamoviruses. Molecular Plant-Microbe Interactions, 3(4), 247. https://doi.org/10.1094/MPMI-3-247
  • Nelson, R. S., Abel, P. P., & Beachy, R. N. (1987). Lesions and virus accumulation in inoculated transgenic tobacco plants expressing the coat protein gene of tobacco mosaic virus. Virology, 158(1), 126–132. https://doi.org/10.1016/0042-6822(87)90245-5
  • Ozvoldik, K., Stockner, T., Rammner, B., & Krieger, E. (2021). Assembly of biomolecular gigastructures and visualization with the Vulkan Graphics API. Journal of Chemical Information and Modeling, 61(10), 5293–5303. https://doi.org/10.1021/acs.jcim.1c00743
  • Register, J. C., & Beachy, R. N. (1989). Effect of protein aggregation state on coat protein-mediated protection against tobacco mosaic virus using a transient protoplast assay. Virology, 173(2), 656–663. https://doi.org/10.1016/0042-6822(89)90578-3
  • Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., & Serrano, L. (2005). The FoldX web server: An online force field. Nucleic Acids Research, 33(Web Server), W382–W388. https://doi.org/10.1093/nar/gki387
  • Sharma, J., Purohit, R., & Hallan, V. (2020). Conformational behavior of coat protein in plants and association with coat protein-mediated resistance against TMV. Brazilian Journal of Microbiology, 51(3), 893–908. https://doi.org/10.1007/s42770-020-00225-0
  • Sharma, J., Bhardwaj, V. K., Das, P., & Purohit, R. (2021). Plant-based analogues identified as potential inhibitor against tobacco mosaic virus: A biosimulation approach. Pesticide Biochemistry and Physiology, 175, 104858. https://doi.org/10.1016/j.pestbp.2021.104858
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Zhang, Z., Liu, L., Wu, H., Liu, L., Kang, B., Peng, B., & Gu, Q. (2018). The 96th amino acid of the coat protein of cucumber green mottle mosaic virus affects virus infectivity. Viruses, 10(1), 6. https://doi.org/10.3390/v10010006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.