442
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Structural-based design of HD-TAC7 PROteolysis TArgeting chimeras (PROTACs) candidate transformations to abrogate SARS-CoV-2 infection

, &
Pages 14566-14581 | Received 27 Dec 2022, Accepted 16 Feb 2023, Published online: 25 Feb 2023

References

  • Abraham, M. J., & Gready, J. E. (2011). Optimization of parameters for molecular dynamics simulation using smooth particle‐mesh Ewald in GROMACS 4.5. Journal of Computational Chemistry, 32(9), 2031–2040. https://doi.org/10.1002/jcc.21773
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Arshia, A. H., Shadravan, S., Solhjoo, A., Sakhteman, A., & Sami, A. (2021). De novo design of novel protease inhibitor candidates in the treatment of SARS-CoV-2 using deep learning, docking, and molecular dynamic simulations. Computers in Biology and Medicine, 139, 104967. https://doi.org/10.1016/j.compbiomed.2021.104967
  • Banerjee, N. S., Moore, D. W., Broker, T. R., & Chow, L. T. (2018). Vorinostat, a pan-HDAC inhibitor, abrogates productive HPV-18 DNA amplification. Proceedings of the National Academy of Sciences of the United States of America, 115(47), E11138–E11147. https://doi.org/10.1073/pnas.1801156115
  • Berman, H. M., Bhat, T. N., Bourne, P. E., Feng, Z., Gilliland, G., Weissig, H., & Westbrook, J. (2000). The protein data bank and the challenge of structural genomics. Nature Structural Biology, 7, 957–959. https://doi.org/10.1038/80734
  • Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W.-C., Uhl, S., Hoagland, D., Møller, R., Jordan, T. X., Oishi, K., Panis, M., Sachs, D., Wang, T. T., Schwartz, R. E., Lim, J. K., Albrecht, R. A., & tenOever, B. R. (2020). Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell, 181(5), 1036–1045.e9. https://doi.org/10.1016/j.cell.2020.04.026
  • Bondeson, D. P., Smith, B. E., Burslem, G. M., Buhimschi, A. D., Hines, J., Jaime-Figueroa, S., Wang, J., Hamman, B. D., Ishchenko, A., & Crews, C. M. (2018). Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chemical Biology, 25(1), 78–87.e5. https://doi.org/10.1016/j.chembiol.2017.09.010e5
  • Cao, F., de Weerd, S., Chen, D., Zwinderman, M. R., van der Wouden, P. E., & Dekker, F. J. (2020). Induced protein degradation of histone deacetylases 3 (HDAC3) by proteolysis targeting chimera (PROTAC). European Journal of Medicinal Chemistry, 208, 112800. https://doi.org/10.1016/j.ejmech.2020.112800
  • Chan, K. H., Zengerle, M., Testa, A., & Ciulli, A. (2018). Impact of target warhead and linkage vector on inducing protein degradation: Comparison of bromodomain and extra-terminal (BET) degraders derived from triazolodiazepine (JQ1) and tetrahydroquinoline (I-BET726) BET inhibitor scaffolds. Journal of Medicinal Chemistry, 61(2), 504–513. https://doi.org/10.1021/acs.jmedchem.6b01912
  • Chen, G., Wu, D., Guo, W., Cao, Y., Huang, D., Wang, H., Wang, T., Zhang, X., Chen, H., Yu, H., Zhang, X., Zhang, M., Wu, S., Song, J., Chen, T., Han, M., Li, S., Luo, X., Zhao, J., & Ning, Q. (2020). Clinical and immunological features of severe and moderate coronavirus disease 2019. The Journal of Clinical Investigation, 130(5), 2620–2629. https://doi.org/10.1172/JCI137244
  • Chua, R. L., Lukassen, S., Trump, S., Hennig, B. P., Wendisch, D., Pott, F., Debnath, O., Thürmann, L., Kurth, F., Völker, M. T., Kazmierski, J., Timmermann, B., Twardziok, S., Schneider, S., Machleidt, F., Müller-Redetzky, H., Maier, M., Krannich, A., Schmidt, S., … Eils, R. (2020). COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nature Biotechnology, 38(8), 970–979. https://doi.org/10.1038/s41587-020-0602-4
  • Churcher, I. (2018). Protac-induced protein degradation in drug discovery: Breaking the rules or just making new ones? Journal of Medicinal Chemistry, 61(2), 444–452. https://doi.org/10.1021/acs.jmedchem.7b01272
  • Clark, M., Cramer, R. D., & Van Opdenbosch, N. (1989). Validation of the general purpose tripos 5.2 force field. Journal of Computational Chemistry, 10(8), 982–1012. https://doi.org/10.1002/jcc.540100804
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with pyrx. Methods in Molecular Biology (Clifton, NJ), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Desantis, J., Mercorelli, B., Celegato, M., Croci, F., Bazzacco, A., Baroni, M., Siragusa, L., Cruciani, G., Loregian, A., & Goracci, L. (2021). Indomethacin-based PROTACs as pan-coronavirus antiviral agents. European Journal of Medicinal Chemistry, 226, 113814. https://doi.org/10.1016/j.ejmech.2021.113814
  • Diao, B., Wang, C., Tan, Y., Chen, X., Liu, Y., Ning, L., Chen, L., Li, M., Liu, Y., Wang, G., Yuan, Z., Feng, Z., Zhang, Y., Wu, Y., & Chen, Y. (2020). Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Frontiers in Immunology, 11, 827. https://doi.org/10.3389/fimmu.2020.00827
  • Doss, C. G. P., Rajith, B., Chakraborty, C., NagaSundaram, N., Ali, S. K., & Zhu, H. (2014). Structural signature of the G719S-T790M double mutation in the EGFR kinase domain and its response to inhibitors. Scientific Reports, 4(1), 1–7. https://doi.org/10.1038/srep05868
  • Drummond, M. L., & Williams, C. I. (2019). In silico modeling of PROTAC-mediated ternary complexes: Validation and application. Journal of Chemical Information and Modeling, 59(4), 1634–1644. https://doi.org/10.1021/acs.jcim.8b00872
  • Emsley, P., & Cowtan, K. (2004). Coot: Model-building tools for molecular graphics. Acta Crystallographica Section D, Biological Crystallography, 60(Pt 12 Pt 1), 2126–2132. https://doi.org/10.1107/S0907444904019158
  • Fakhar, M., Zahid, S., Rashid., & S., Najumuddin. (2022). Structural basis of Klotho binding to VEGFR2 and TRPC1 and repurposing calcium channel blockers as TRPC1 antagonists for the treatment of age-related cardiac hypertrophy. Archives of Biochemistry and Biophysics, 719, 109171. https://doi.org/10.1016/j.abb.2022.109171
  • Feuston, B. P., Miller, M. D., Culberson, J. C., Nachbar, R. B., & Kearsley, S. K. (2001). Comparison of knowledge-based and distance geometry approaches for generation of molecular conformations. Journal of Chemical Information and Computer Sciences, 41(3), 754–763. https://doi.org/10.1021/ci000464g
  • Furlan, A., Monzani, V., Reznikov, L. L., Leoni, F., Fossati, G., Modena, D., Mascagni, P., & Dinarello, C. A. (2011). Pharmacokinetics, safety and inducible cytokine responses during a phase 1 trial of the oral histone deacetylase inhibitor ITF2357 (Givinostat). Molecular Medicine (Cambridge, MA), 17(5–6), 353–362. https://doi.org/10.2119/molmed.2011.00020
  • Gamage, A. M., Tan, K. S., Chan, W. O. Y., Liu, J., Tan, C. W., Ong, Y. K., Thong, M., Andiappan, A. K., Anderson, D. E., Wang, D. Y., & Wang, L. F. (2020). Infection of human nasal epithelial cells with SARS-CoV-2 and a 382-Nt deletion isolate lacking ORF8 reveals similar viral kinetics and host transcriptional profiles. PLoS Pathogens, 16(12), e10009130. https://doi.org/10.1371/journal.ppat.1009130
  • Gao, S., Huang, T., Song, L., Xu, S., Cheng, Y., Cherukupalli, S., Kang, D., Zhao, T., Sun, L., Zhang, J., Zhan, P., & Liu, X. (2022). Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors. Acta Pharmaceutica Sinica B, 12(2), 581–599. https://doi.org/10.1016/j.apsb.2021.08.027
  • Ghiboub, M., Zhao, J., Li Yim, A. Y. F., Schilderink, R., Verseijden, C., van Hamersveld, P. H. P., Duarte, J. M., Hakvoort, T. B. M., Admiraal, I., Harker, N. R., Tough, D. F., Henneman, P., de Winther, M. P. J., & de Jonge, W. J. (2020). HDAC3 mediates the inflammatory response and LPS tolerance in human monocytes and macrophages. Frontiers in Immunology, 11, 550769. https://doi.org/10.3389/fimmu.2020.550769
  • Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., & Onufriev, A. (2005). H++: A server for estimating pkas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33, W368–371. https://doi.org/10.1093/nar/gki464
  • Grabiec, A. M., Krausz, S., de Jager, W., Burakowski, T., Groot, D., Sanders, M. E., Prakken, B. J., Maslinski, W., Eldering, E., Tak, P. P., & Reedquist, K. A. (2010). Histone deacetylase inhibitors suppress inflammatory activation of rheumatoid arthritis patient synovial macrophages and tissue. Journal of Immunology (Baltimore, MD: 1950), 184(5), 2718–2728. https://doi.org/10.4049/jimmunol.0901467
  • Guenther, M. G., Barak, O. R. R., & Lazar, M. A. (2001). The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Molecular and Cellular Biology, 21(18), 6091–6101. https://doi.org/10.1128/MCB.21.18.6091-6101.2001
  • Guenther, M. G., Lane, W. S., Fischle, W., Verdin, E., Lazar, M. A., & Shiekhattar, R. (2000). A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes & Development, 14(9), 1048–1057. https://doi.org/10.1101/gad.14.9.1048
  • Gul, M., Navid, A., & Rashid, S. (2023). Structural basis of constitutive c-Src kinase activity due to R175L and W118A mutations. Journal of Biomolecular Structure and Dynamics, 41(2), 634–645. https://doi.org/10.1080/07391102.2021.2010600
  • Halgren, T. A. (1996). Merck molecular force field. Ii. Mmff94 van der Waals and electrostatic parameters for intermolecular interactions. Journal of Computational Chemistry, 17(5–6), 520–552. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6 < 520::AID-JCC2 > 3.0.CO;2-W
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
  • Honig, B., & Nicholls, A. (1995). Classical electrostatics in biology and chemistry. Science (New York, NY), 268(5214), 1144–1149. https://doi.org/10.1126/science.7761829
  • Ishizuka, T., & Lazar, M. A. (2005). The nuclear receptor corepressor deacetylase activating domain is essential for repression by thyroid hormone receptor. Molecular Endocrinology (Baltimore, MD), 19(6), 1443–1451. https://doi.org/10.1210/me.2005-0009
  • Jose, R. J., & Manuel, A. (2020). COVID-19 cytokine storm: The interplay between inflammation and coagulation. The Lancet Respiratory Medicine, 8(6), e46–e47. https://doi.org/10.1016/S2213-2600(20)30216-2
  • Karki, R., Sharma, B. R., Tuladhar, S., Williams, E. P., Zalduondo, L., Samir, P., Zheng, M., Sundaram, B., Banoth, B., Malireddi, R. K. S., Schreiner, P., Neale, G., Vogel, P., Webby, R., Jonsson, C. B., & Kanneganti, T.-D. (2021). Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell, 184(1), 149–168.e17. https://doi.org/10.1016/j.cell.2020.11.025
  • Kumari, R., Kumar, R., & Lynn, A, Open Source Drug Discovery Consortium. (2014). g_mmpbsa A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Labute, P. (2010). LowModeMD implicit low-mode velocity filtering applied to conformational search of macrocycles and protein loops. Journal of Chemical Information and Modeling, 50(5), 792–800. https://doi.org/10.1021/ci900508k
  • Lai, A. C., & Crews, C. M. (2017). Induced protein degradation: An emerging drug discovery paradigm. Nature Reviews. Drug Discovery, 16(2), 101–114. https://doi.org/10.1038/nrd.2016.211
  • Leoni, F., Zaliani, A., Bertolini, G., Porro, G., Pagani, P., Pozzi, P., Donà, G., Fossati, G., Sozzani, S., Azam, T., Bufler, P., Fantuzzi, G., Goncharov, I., Kim, S. H., Pomerantz, B. J., Reznikov, L. L., Siegmund, B., Dinarello, C. A., & Mascagni, P. (2002). The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 2995–3000. https://doi.org/10.1073/pnas.052702999
  • Li, W., Elhassan, R. M., Hou, X., & Fang, H. (2021). Recent advances in small molecule PROTACs for the treatment of cancer. Current Medicinal Chemistry, 28(24), 4893–4909. https://doi.org/10.2174/0929867327666201117141611
  • Liu, K., Zou, R., Cui, W., Li, M., Wang, X., Dong, J., Li, H., Li, H., Wang, P., Shao, X., Su, W., Chan, H. C. S., Li, H., & Yuan, S. (2020). Clinical HDAC inhibitors are effective drugs to prevent the entry of SARS-Cov2. ACS Pharmacology & Translational Science, 3(6), 1361–1370. https://doi.org/10.1021/acsptsci.0c00163
  • Liu, Y., Liang, C., Xin, L., Ren, X., Tian, L., Ju, X., Li, H., Wang, Y., Zhao, Q., Liu, H., Cao, W., Xie, X., Zhang, D., Wang, Y., & Jian, Y. (2020). The development of coronavirus 3C-like protease (3CLpro) inhibitors from 2010 to 2020. European Journal of Medicinal Chemistry, 206, 112711. https://doi.org/10.3390/molecules25245932
  • Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., & Manson, J. J, HLH Across Speciality Collaboration, UK. (2020). COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet (London, England), 395(10229), 1033–1034. https://doi.org/10.1016/S0140-6736(20)30628-0
  • Meng, E. C., Pettersen, E. F., Couch, G. S., Huang, C. C., & Ferrin, T. E. (2006). Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinformatics, 7(1), 1–10. https://doi.org/10.1186/1471-2105-7-339
  • Netea, M. G., Joosten, L. A. B., Latz, E., Mills, K. H. G., Natoli, G., Stunnenberg, H. G., O’Neill, L. A. J., & Xavier, R. J. (2016). Trained immunity: A program of innate immune memory in health and disease. Science (New York, NY), 352(6284), aaf1098. https://doi.org/10.1126/science.aaf1098
  • Noor, Z., Afzal, N., & Rashid, S. (2015). Exploration of novel inhibitors for class I histone deacetylase isoforms by QSAR modeling and molecular dynamics simulation assays. PLoS One, 10(10), e0139588. https://doi.org/10.1371/journal.pone.0143155
  • Oberoi, J., Fairall, L., Watson, P. J., Yang, J.-C., Czimmerer, Z., Kampmann, T., Goult, B. T., Greenwood, J. A., Gooch, J. T., Kallenberger, B. C., Nagy, L., Neuhaus, D., & Schwabe, J. W. R. (2011). Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nature Structural & Molecular Biology, 18(2), 177–184. https://doi.org/10.1038/nsmb.1983
  • O’Boyle, N. M., Vandermeersch, T., Flynn, C. J., Maguire, A. R., & Hutchison, G. R. (2011). Confab-Systematic generation of diverse low-energy conformers. Journal of Cheminformatics, 3(1), 1–9. https://doi.org/10.1186/1758-2946-3-8
  • Paiva, S. L., & Crews, C. M. (2019). Targeted protein degradation: Elements of PROTAC design. Current Opinion in Chemical Biology, 50, 111–119. https://doi.org/10.1016/j.cbpa.2019.02.022
  • Park, A., & Iwasaki, A. (2020). Type I and type III interferons – induction, signaling, evasion, and application to combat COVID-19. Cell Host & Microbe, 27(6), 870–878. https://doi.org/10.1016/j.chom.2020.05.008
  • Pedersen, S. F., & Ho, Y. C. (2020). SARS-CoV-2: A storm is raging. The Journal of Clinical Investigation, 130(5), 2202–2205. https://doi.org/10.1172/JCI137647
  • Perico, L., Benigni, A., Casiraghi, F., Ng, L. F. P., Renia, L., & Remuzzi, G. (2021). Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nature Reviews. Nephrology, 17(1), 46–64. https://doi.org/10.1038/s41581-020-00357-4
  • Pitt, B., Sutton, N. R., Wang, Z., Goonewardena, S. N., & Holinstat, M. (2021). Potential repurposing of the HDAC inhibitor valproic acid for patients with COVID-19. European Journal of Pharmacology, 898, 173988. https://doi.org/10.1016/j.ejphar.2021.173988
  • Poli, V., Pui-Yan Ma, V., Di Gioia, M., Broggi, A., Benamar, M., Chen, Q., Mazitschek, R., Haggarty, S. J., Chatila, T. A., Karp, J. M., & Zanoni, I. (2021). Zinc-dependent histone deacetylases drive neutrophil extracellular trap formation and potentiate local and systemic inflammation. iScience, 24(11), 103256. https://doi.org/10.1016/j.isci.2021.103256
  • Ripamonti, C., Spadotto, V., Pozzi, P., Stevenazzi, A., Vergani, B., Marchini, M., Sandrone, G., Bonetti, E., Mazzarella, L., Minucci, S., Steinkühler, C., & Fossati, G. (2022). HDAC inhibition as potential therapeutic strategy to restore the deregulated immune response in severe COVID-19. Frontiers in Immunology, 13, 841716. https://doi.org/10.3389/fimmu.2022.841716
  • Saeed, S., Quintin, J., Kerstens, H. H. D., Rao, N. A., Aghajanirefah, A., Matarese, F., Cheng, S.-C., Ratter, J., Berentsen, K., van der Ent, M. A., Sharifi, N., Janssen-Megens, E. M., Ter Huurne, M., Mandoli, A., van Schaik, T., Ng, A., Burden, F., Downes, K., Frontini, M., … Stunnenberg, H. G. (2014). Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science (New York, NY), 345(6204), 1251086. https://doi.org/10.1126/science.1251086
  • Saha, B., & Parks, R. J. (2019). Histone deacetylase inhibitor suberoylanilide hydroxamic acid suppresses human adenovirus gene expression and replication. Journal of Virology, 93(12), e00088–19. https://doi.org/10.1128/JVI.00088-19
  • Schapira, M., Calabrese, M. F., Bullock, A. N., & Crews, C. M. (2019). Targeted protein degradation: Expanding the toolbox. Nature Reviews Drug Discovery, 18(12), 949–963. https://doi.org/10.1038/s41573-019-0047-y
  • Schator, D., Gomez-Valero, L., Buchrieser, C., & Rolando, M. (2021). Patho-epigenetics: Histone deacetylases as targets of pathogens and therapeutics. microLife, 2, uqai013. https://doi.org/10.1093/femsml/uqab013
  • Shin, S. A., Joo, B. J., Lee, J. S., Ryu, G., Han, M., Kim, W. Y., Park, H. H., Lee, J. H., & Lee, C. S. (2020). Phytochemicals as anti-inflammatory agents in animal models of prevalent inflammatory diseases. Molecules, 25(24), 5932. https://doi.org/10.3390/molecules25245932
  • Sindhu, T., & Srinivasan, P. (2015). Exploring the binding properties of agonists interacting with human TGR5 using structural modeling, molecular docking and dynamics simulations. RSC Advances, 5(19), 14202–14213. https://doi.org/10.1080/07391102.2021.2010600
  • Takahashi, Y., Hayakawa, A., Sano, R., Fukuda, H., Harada, M., Kubo, R., Okawa, T., & Kominato, Y. (2021). Histone deacetylase inhibitors suppress ACE2 and ABO simultaneously, suggesting a preventive potential against COVID-19. Scientific Reports, 11(1), 3379. https://doi.org/10.1038/s41598-021-82970-2
  • Takeuchi, O., & Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140(6), 805–820. https://doi.org/10.1016/j.cell.2010.01.022
  • Teodori, L., Sestili, P., Madiai, V., Coppari, S., Fraternale, D., Rocchi, M. B. L., Ramakrishna, S., & Albertini, M. C. (2020). MicroRNAs bioinformatics analyses identifying HDAC pathway as a putative target for existing anti‐COVID‐19 therapeutics. Frontiers in Pharmacology, 11, 582003. https://doi.org/10.3389/fphar.2020.582003
  • Tisoncik, J. R., Korth, M. J., Simmons, C. P., Farrar, J., Martin, T. R., & Katze, M. G. (2012). Into the eye of the cytokine storm. Microbiology and Molecular Biology Reviews, 76(1), 16–32. https://doi.org/10.1128/mmbr.05015-11
  • Trott, O., & Olson, A. J. (2010). Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • van Aalten, D. M. F., Bywater, R., Findlay, J. B. C., Hendlich, M., Hooft, R. W. W., & Vriend, G. (1996). Prodrg, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. Journal of Computer-Aided Molecular Design, 10(3), 255–262. https://doi.org/10.1007/BF00355047
  • Vankadari, N., & Wilce, J. A. (2020). Emerging COVID-19 coronavirus: Glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerging Microbes & Infections, 9(1), 601–604. https://doi.org/10.1080/22221751.2020.1739565
  • Villagra, A., Sotomayor, E. M., & Seto, E. (2010). Histone deacetylases and the immunological network: Implications in cancer and inflammation. Oncogene, 29(2), 157–173. https://doi.org/10.1038/onc.2009.334
  • Vincent, J. L. (2021). COVID-19: It’s all about sepsis. Future Microbiology, 16, 131–133. https://doi.org/10.2217/fmb-2020-0312
  • von Knethen, A., & Brüne, B. (2019). Histone deacetylation inhibitors as therapy concept in sepsis. International Journal of Molecular Sciences, 20(2), 346. https://doi.org/10.3390/ijms20020346
  • Watson, P. J., Fairall, L., Santos, G. M., & Schwabe, J. W. (2012). Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature, 481(7381), 335–340. https://doi.org/10.1038/nature10728
  • Weng, G., Shen, C., Cao, D., Gao, J., Dong, X., He, Q., Yang, B., Li, D., Wu, J., & Hou, T. (2021). PROTAC-DB: An online database of PROTACs. Nucleic Acids Research, 49(D1), D1381–D1387. https://doi.org/10.1093/nar/gkaa807
  • Winter, G. E., Buckley, D. L., Paulk, J., Roberts, J. M., Souza, A., Dhe-Paganon, S., & Bradner, J. E. (2015). Phthalimide conjugation as a strategy for in vivo target protein degradation. Science (New York, NY), 348(6241), 1376–1381. https://doi.org/10.1126/science.aab1433
  • Wu, Z., & McGoogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA, 323(13), 1239–1242. https://doi.org/10.1001/jama.2020.2648
  • Yan, K., Cao, Q., Reilly, C. M., Young, N. L., Garcia, B. A., & Mishra, N. (2011). Histone Deacetylase 9 Deficiency Protects Against Effector T Cell-Mediated Systemic Autoimmunity. The Journal of Biological Chemistry, 286(33), 28833–28843. https://doi.org/10.1074/jbc.M111.233932
  • Yang, K., Song, Y., Xie, H., Wu, H., Wu, Y. T., Leisten, E. D., & Tang, W. (2018). Development of the first small molecule histone deacetylase 6 (HDAC6) degraders. Bioorganic & Medicinal Chemistry Letters, 28(14), 2493–2497. https://doi.org/10.1016/j.bmcl.2018.05.057
  • Yang, K., Wu, H., Zhang, Z., Leisten, E. D., Nie, X., Liu, B., Wen, Z., Zhang, J., Cunningham, M. D., & Tang, W. (2020). Development of selective histone deacetylase 6 (HDAC6) degraders recruiting von Hippel–Lindau (VHL) E3 ubiquitin ligase. ACS Medicinal Chemistry Letters, 11(4), 575–581. https://doi.org/10.1021/acsmedchemlett.0c00046
  • Yang, X., Yu, Y., Xu, J., Shu, H., Xia, J., Liu, H., Wu, Y., Zhang, L., Yu, Z., Fang, M., Yu, T., Wang, Y., Pan, S., Zou, X., Yuan, S., & Shang, Y. (2020). Clinical course and outcomes of critically Ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. The Lancet Respiratory Medicine, 8(5), . 75–481. https://doi.org/10.1016/S2213-2600(20)30079-5
  • Yang, Y., Shen, C., Li, J., Yuan, J., Wei, J., Huang, F., Wang, F., Li, G., Li, Y., Xing, L., Peng, L., Yang, M., Cao, M., Zheng, H., Wu, W., Zou, R., Li, D., Xu, Z., Wang, H., … Liu, Y. (2020). Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. The Journal of Allergy and Clinical Immunology, 146(1), 119–127.e4. https://doi.org/10.1016/j.jaci.2020.04.027
  • You, S. H., Liao, X., Weiss, R. E., & Lazar, M. A. (2010). The interaction between nuclear receptor corepressor and histone deacetylase 3 regulates both positive and negative thyroid hormone action in vivo. Molecular Endocrinology (Baltimore, MD), 24(7), 1359–1367. https://doi.org/10.1210/me.2009-0501
  • Zahid, S., Basharat, S., Fakhar, M., & Rashid, S. (2022). Molecular dynamics and structural analysis of the binding of COP1 E3 ubiquitin ligase to β-catenin and TRIB pseudokinases. Proteins, 90(4), 993–1004. https://doi.org/10.1002/prot.26292
  • Zahid, S., Gul, M., Shafique, S., & Rashid, S. (2022). E2UbcH5B-derived peptide ligands target HECT E3-E2 binding site and block the Ub-dependent SARS-CoV-2 egression: A computational study. Computers in Biology and Medicine, 146, 105660. https://doi.org/10.1016/j.compbiomed.2022.105660
  • Zhang, H., Penninger, J. M., Li, Y., Zhong, N., & Slutsky, A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 46(4), 586–590. https://doi.org/10.1007/s00134-020-05985-9
  • Zhong, H., May, M. J., Jimi, E., & Ghosh, S. (2002). The phosphorylation status of nuclear NF-κB determines its association with CBP/p300 or HDAC-1. Molecular Cell, 9(3), 625–636. https://doi.org/10.1016/s1097-2765(02)00477-x
  • Ziegler, C. G. K., Allon, S. J., Nyquist, S. K., Mbano, I. M., Miao, V. N., Tzouanas, C. N., Cao, Y., Yousif, A. S., Bals, J., Hauser, B. M., Feldman, J., Muus, C., Wadsworth, M. H., Kazer, S. W., Hughes, T. K., Doran, B., Gatter, G. J., Vukovic, M., Taliaferro, F., … Ordovas-Montanes. (2020). SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell, 181(5), 1016–1035.e19. https://doi.org/10.1016/j.cell.2020.04.035

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.