144
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In silico screening of inhibitors against human dihydrofolate reductase to identify potential anticancer compounds

, &
Pages 14497-14509 | Received 20 Apr 2022, Accepted 14 Feb 2023, Published online: 08 Mar 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1, 19–25.
  • Abu-Melha, S. (2021). Synthesis, molecular modeling, and anticancer screening of some new imidazothiadiazole analogs. Polycyclic Aromatic Compounds, 42(9), 5833–5854.
  • Akabli, T., Toufik, H., & Lamchouri, F. (2022). In silico modeling studies of N9-substituted harmine derivatives as potential anticancer agents: Combination of ligand-based and structure-based approaches. Journal of Biomolecular Structure & Dynamics, 40(9), 3965–3978. https://doi.org/10.1080/07391102.2020.1852118
  • Appleman, J. R., Prendergast, N., Delcamp, T., Freisheim, J., & Blakley, R. (1988). Kinetics of the formation and isomerization of methotrexate complexes of recombinant human dihydrofolate reductase. The Journal of Biological Chemistry, 263(21), 10304–10313.
  • Banerjee, R., Dey, M., Maity, S., Bagchi, S., Vora, A., Shakil, U., & Goswami, R. (2016). Preventive role of Curcumin against hepatotoxic effects of Methotrexate and Cyclophosphamide. Journal of Chemical and Pharmaceutical Sciences, 4, 38–42.
  • Benet, L. Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the rule of 5 and drugability. Advanced Drug Delivery Reviews, 101, 89–98. https://doi.org/10.1016/j.addr.2016.05.007
  • Berendsen, H. J., Postma, J. V., VAN Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Berman, E., & Werbel, L. M. (1991). The renewed potential for folate antagonists in contemporary cancer chemotherapy. Journal of Medicinal Chemistry, 34(2), 479–485. https://doi.org/10.1021/jm00106a001
  • Cohen, N. C. (1996). Guidebook on molecular modeling in drug design. Gulf Professional Publishing.
  • Czekster, C. M., Vandemeulebroucke, A., & Blanchard, J. S. (2011). Kinetic and chemical mechanism of the dihydrofolate reductase from Mycobacterium tuberculosis. Biochemistry, 50(3), 367–375. https://doi.org/10.1021/bi1016843
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • DE Freitas, R. F., & Schapira, M. (2017). A systematic analysis of atomic protein–ligand interactions in the PDB. MedChemComm, 8(10), 1970–1981. https://doi.org/10.1039/C7MD00381A
  • Delano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40, 82–92.
  • Dhanesha, M., Singh, K., Bhori, M., & Marar, T. (2015). Impact of antioxidant supplementation on toxicity of methotrexate: an in vitro study on erythrocytes using vitamin E. Asian Journal of Pharmaceutical and Clinical Research, 8, 339–343.
  • EL-Subbagh, H. I., Hassan, G. S., EL-Messery, S. M., Al-Rashood, S. T., Al-Omary, F. A., Abulfadl, Y. S., & Shabayek, M. I. (2014). Nonclassical antifolates, part 5. Benzodiazepine analogs as a new class of DHFR inhibitors: Synthesis, antitumor testing and molecular modeling study. European Journal of Medicinal Chemistry, 74, 234–245. https://doi.org/10.1016/j.ejmech.2014.01.004
  • Giordano, A., & Tommonaro, G. (2019). Curcumin and cancer. Nutrients, 11(10), 2376. https://doi.org/10.3390/nu11102376
  • Günther, S., Senger, C., Michalsky, E., Goede, A., & Preissner, R. (2006). Representation of target-bound drugs by computed conformers: implications for conformational libraries. BMC Bioinformatics, 7(1), 1–11. https://doi.org/10.1186/1471-2105-7-293
  • Hobani, Y., Jerah, A., & Bidwai, A. (2017). A comparative molecular docking study of curcumin and methotrexate to dihydrofolate reductase. Bioinformation, 13(3), 63–66. https://doi.org/10.6026/97320630013063
  • Hsieh, Y.-C., Tedeschi, P., Lawal, R. A., Banerjee, D., Scotto, K., Kerrigan, J. E., Lee, K.-C., Johnson-Farley, N., Bertino, J. R., & Abali, E. E. (2013). Enhanced degradation of dihydrofolate reductase through inhibition of NAD kinase by nicotinamide analogs. Molecular Pharmacology, 83(2), 339–353. https://doi.org/10.1124/mol.112.080218
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jackson, R., & Niethammer, D. (1977). Acquired methotrexate resistance in lymphoblasts resulting from altered kinetic properties of dihydrofoltate reductase. European Journal of Cancer, 13(6), 567–575. https://doi.org/10.1016/0014-2964(77)90118-9
  • Jolivet, J., Cowan, K. H., Curt, G. A., Clendeninn, N. J., & Chabner, B. A. (1983). The pharmacology and clinical use of methotrexate. The New England Journal of Medicine, 309(18), 1094–1104. https://doi.org/10.1056/NEJM198311033091805
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers, 22(12), 2577–2637. https://doi.org/10.1002/bip.360221211
  • Kalogris, C., Garulli, C., Pietrella, L., Gambini, V., Pucciarelli, S., Lucci, C., Tilio, M., Zabaleta, M. E., Bartolacci, C., Andreani, C., Giangrossi, M., Iezzi, M., Belletti, B., Marchini, C., & Amici, A. (2014). Sanguinarine suppresses basal-like breast cancer growth through dihydrofolate reductase inhibition. Biochemical Pharmacology, 90(3), 226–234. https://doi.org/10.1016/j.bcp.2014.05.014
  • Karami Fath, M., Babakhaniyan, K., Zokaei, M., Yaghoubian, A., Akbari, S., Khorsandi, M., Soofi, A., Nabi-Afjadi, M., Zalpoor, H., Jalalifar, F., Azargoonjahromi, A., Payandeh, Z., & Alagheband Bahrami, A. (2022). Anti-cancer peptide-based therapeutic strategies in solid tumors. Cellular & Molecular Biology Letters, 27(1), 1–26. https://doi.org/10.1186/s11658-022-00332-w
  • Katsila, T., Spyroulias, G. A., Patrinos, G. P., & Matsoukas, M.-T. (2016). Computational approaches in target identification and drug discovery. Computational and Structural Biotechnology Journal, 14, 177–184. https://doi.org/10.1016/j.csbj.2016.04.004
  • Kawata, M., & Nagashima, U. (2001). Particle mesh Ewald method for three-dimensional systems with two-dimensional periodicity. Chemical Physics Letters, 340(1–2), 165–172. https://doi.org/10.1016/S0009-2614(01)00393-1
  • Lewis, W. S., Cody, V., Galitsky, N., Luft, J. R., Pangborn, W., Chunduru, S. K., Spencer, H. T., Appleman, J. R., & Blakley, R. L. (1995). Methotrexate-resistant variants of human dihydrofolate reductase with substitutions of leucine 22: Kinetics, crystallography, and potential as selectable markers (∗). The Journal of Biological Chemistry, 270(10), 5057–5064. https://doi.org/10.1074/jbc.270.10.5057
  • Ma, D.-L., Chan, D. S.-H., & Leung, C.-H. (2013). Drug repositioning by structure-based virtual screening. Chemical Society Reviews, 42(5), 2130–2141. https://doi.org/10.1039/c2cs35357a
  • Maisuradze, G. G., Liwo, A., & Scheraga, H. A. (2009). Principal component analysis for protein folding dynamics. Journal of Molecular Biology, 385(1), 312–329. https://doi.org/10.1016/j.jmb.2008.10.018
  • Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PloS One, 10(3), e0119264. https://doi.org/10.1371/journal.pone.0119264
  • Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Nakao, Y., & Fusetani, N. (2007). Enzyme inhibitors from marine invertebrates. Journal of Natural Products, 70(4), 689–710. https://doi.org/10.1021/np060600x
  • Oefner, C., D'arcy, A., & Winkler, F. K. (1988). Crystal structure of human dihydrofolate reductase complexed with folate. European Journal of Biochemistry, 174(2), 377–385. https://doi.org/10.1111/j.1432-1033.1988.tb14108.x
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Potts, S. J., Edwards, D. J., & Hoffman, R. (2005). Challenges of target/compound data integration from disease to chemistry: a case study of dihydrofolate reductase inhibitors. Current Drug Discovery Technologies, 2(2), 75–87. https://doi.org/10.2174/1570163054064675
  • Raimondi, M. V., Randazzo, O., LA Franca, M., Barone, G., Vignoni, E., Rossi, D., & Collina, S. (2019). DHFR inhibitors: reading the past for discovering novel anticancer agents. Molecules, 24(6), 1140. https://doi.org/10.3390/molecules24061140
  • Rana, R., Rampogu, S., Zeb, A., Son, M., Park, C., Lee, G., Yoon, S., Baek, A., Parameswaran, S., Park, S., & Lee, K. (2019). In silico study probes potential inhibitors of human dihydrofolate reductase for cancer therapeutics. Journal of Clinical Medicine, 8(2), 233. https://doi.org/10.3390/jcm8020233
  • Robinson, A. D., Eich, M.-L., & Varambally, S. (2020). Dysregulation of de novo nucleotide biosynthetic pathway enzymes in cancer and targeting opportunities. Cancer Letters, 470, 134–140. https://doi.org/10.1016/j.canlet.2019.11.013
  • Rodríguez, M., Coma, S., Noé, V., & Ciudad, C. J. (2002). Development and effects of immunoliposomes carrying an antisense oligonucleotide against DHFR RNA and directed toward human breast cancer cells overexpressing HER2. Antisense & Nucleic Acid Drug Development, 12(5), 311–325. https://doi.org/10.1089/108729002761381294
  • Santos, L. H., Ferreira, R. S., & Caffarena, E. R. (2019). Integrating molecular docking and molecular dynamics simulations. Docking screens for drug discovery. Springer.
  • Schnell, J. R., Dyson, H. J., & Wright, P. E. (2004). Structure, dynamics, and catalytic function of dihydrofolate reductase. Annual Review of Biophysics and Biomolecular Structure, 33, 119–140. https://doi.org/10.1146/annurev.biophys.33.110502.133613
  • Schweitzer, B. I., Dicker, A. P., & Bertino, J. R. (1990). Dihydrofolate reductase as a therapeutic target. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 4(8), 2441–2452. https://doi.org/10.1096/fasebj.4.8.2185970
  • Sittikornpaiboon, P., Toochinda, P., & Lawtrakul, L. (2017). Structural and dynamics perspectives on the binding of substrate and inhibitors in mycobacterium tuberculosis DHFR. Scientia Pharmaceutica, 85(3), 31. https://doi.org/10.3390/scipharm85030031
  • Skacel, N., Menon, L. G., Mishra, P. J., Peters, R., Banerjee, D., Bertino, J. R., & Abali, E. E. (2005). Identification of amino acids required for the functional up-regulation of human dihydrofolate reductase protein in response to antifolate treatment. The Journal of Biological Chemistry, 280(24), 22721–22731. https://doi.org/10.1074/jbc.M500277200
  • Solomon, D. H., Glynn, R. J., Karlson, E. W., Lu, F., Corrigan, C., Colls, J., Xu, C., MacFadyen, J., Barbhaiya, M., Berliner, N., Dellaripa, P. F., Everett, B. M., Pradhan, A. D., Hammond, S. P., Murray, M., Rao, D. A., Ritter, S. Y., Rutherford, A., Sparks, J. A., … Ridker, P. M. (2020). Adverse effects of low-dose methotrexate: a randomized trial. Annals of Internal Medicine, 172(6), 369–380. https://doi.org/10.7326/M19-3369
  • Soofi, A., Taghizadeh, M., Tabatabaei, S. M., Tavirani, M. R., Shakib, H., Namaki, S., & Alighiarloo, N. S. (2020). Centrality analysis of protein-protein interaction networks and molecular docking prioritize potential drug-targets in type 1 diabetes. Iranian Journal of Pharmaceutical Research: IJPR, 19(4), 121–134.
  • Taghvaei, S., Sabouni, F., Minuchehr, Z., & Taghvaei, A. (2021). Identification of novel anti-cancer agents, applying in silico method for SENP1 protease inhibition. Journal of Biomolecular Structure and Dynamics, 40(14), 6228–6242.
  • Tosso, R. D., Andujar, S. A., Gutierrez, L., Angelina, E., Rodriguez, R., Nogueras, M., Baldoni, H., Suvire, F. D., Cobo, J., & Enriz, R. D. (2013). Molecular modeling study of dihydrofolate reductase inhibitors. Molecular dynamics simulations, quantum mechanical calculations, and experimental corroboration. Journal of Chemical Information and Modeling, 53(8), 2018–2032. https://doi.org/10.1021/ci400178h
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Vassilev, A., & Depamphilis, M. L. (2017). Links between DNA replication, stem cells and cancer. Genes, 8(2), 45. https://doi.org/10.3390/genes8020045
  • Volk, E. L., Rohde, K., Rhee, M., Mcguire, J. J., Doyle, L. A., Ross, D. D., & Schneider, E. (2000). Methotrexate cross-resistance in a mitoxantrone-selected multidrug-resistant MCF7 breast cancer cell line is attributable to enhanced energy-dependent drug efflux. Cancer Research, 60, 3514–3521.
  • Volpato, J. P., Yachnin, B. J., Blanchet, J., Guerrero, V., Poulin, L., Fossati, E., Berghuis, A. M., & Pelletier, J. N. (2009). Multiple conformers in active site of human dihydrofolate reductase F31R/Q35E double mutant suggest structural basis for methotrexate resistance. The Journal of Biological Chemistry, 284(30), 20079–20089. https://doi.org/10.1074/jbc.M109.018010
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wróbel, A., Baradyn, M., Ratkiewicz, A., & Drozdowska, D. (2021). Synthesis, biological activity, and molecular dynamics study of novel series of a trimethoprim analogs as multi-targeted compounds: Dihydrofolate reductase (DHFR) inhibitors and DNA-binding agents. International Journal of Molecular Sciences, 22(7), 3685. https://doi.org/10.3390/ijms22073685
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: a fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/jcc.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.